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Abstract. The relaxation dynamics of nanoscale molecules such agAdrarises from spin—
lattice coupling and interaction with nuclear spins. Using a resolvent method in terms of the
energy eigenstates and the first Born approximation with respect to phonon scattering, and
averaging over the hyperfine field, we obtain a controlled approximation for the non-equilibrium
magnetic relaxation behaviour and, in particular, for the corresponding rate. The rate is finite at
T = 0, then increases linearly with, and shows Arrhenius behaviour at higher temperature; for
zero magnetic field3 there are two different activation energies. The resonances as a function
of B are shown to be slightly asymmetric abalit= 0. Taking account of a quartic crystal field
gives rise to a temperature-dependent shift of the resonant values e find that, contrary

to previous results, the rate is independent of the magnetic field at low but finite temperatures;
for T — 0O itis linear in B. Finally we compare our findings with various experimental data.

1. Introduction

During the last decade, nanoscale molecules have attracted much attention because of their
particular long-time magnetic relaxation behaviour. These systems are interesting from a
fundamental point of view, as possible realizations for macroscopic quantum coherence
(cf. Leggett’s contribution to reference [1]), and since they permit one to study dissipation
mechanisms in magnets of mesoscopic size that might be relevant for the dynamics of
domain walls in bulk materials [2, 3].

These molecules comprise a few tens of atoms whose electronic spins couple to a total
spin §; for Mn2Ac one hasS = 10. A uniaxial crystal field gives rise to an energy ladder
with degenerate ground stat8s= +S, and residual couplings result in a tiny ground-state
splitting 2. Calculating2 is not a simple matter; it has been tackled in a semiclassical
approximation, i.eS — oo with &S constant, and by path integral methods for quantum
spins [4-7]; for recent reviews see references [8, 1].

Various experiments have revealed a rich dependence of the relaxation behaviour on
temperature and magnetic field. The rate shows activated behaviour above a few K [9-13],
whereas it tends towards a constant at lo@efl0, 11]; the characteristic timescale may
reach several weeks. As a function of the magnetic field, the rate shows maxima at certain
valuesB; [12-16]; see (1.2) below.

The observed relaxation behaviour indicates the relevance of other degrees of freedom.
Coupling to elastic waves, or phonons, is needed to ensure energy conservation both for
transitions between the ground states [17, 18] and from excited levels [19-23]. The hyperfine
interaction couples electronic and nuclear spins; it gives rise to a random magnetic field
and influences the relaxation dynamics [24—26].

1 Present address: UniveksiBordeaux-I, CPMOH, 351 cours de la Bitation, 33405 Talence, France.
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The present theory applies quite generally to an easy-axis magnet witts sptore
specifically, we consider a MpAc molecule that consists of eight Mhions with spin 2 and
four Mn** ions with sping [1, 26]. The magnetic interaction leads to a total spia- 10,
and the tetragonal molecular symmetry defines an ‘easy axis’ or quantization dirgction
The resulting 21 states are split by a quadratic spin anisotmyzz; an external magnetic
field along thez-axis adds a Zeeman termguBS,, thus giving rise to the levels

Ey = —AM? — guBM (1.1)
where the magnetic quantum numbér denotes the eigenvalues 8f. The anisotropy
parameter takes a value df/ kg ~ 0.6 K.
For B = 0, the stategM) and|—M) are degenerate. Similar pairs of resonant levels
|—M) and|M — J) occur at
By=1J A 1.2)
gu
where we havet_y = Ey_y.

Whereas the energy levels of the molecule are well described in terms of the static
crystal field, the dynamics, i.e., the magnetic relaxation, requires one to take into account
bath variables. Coupling to nuclear spins, i.e. the hyperfine interaction, has been considered
in detail in references [25, 26]. Since there is no simple expression for the microscopic
coupling potential in terms of the collective electron sgin we subsume the hyperfine
interaction in an additional magnetic field energy

Ehf - _thx - thz (13)
where the field components. and%, are random quantities, with distribution lavi?s(/;).

Thus the spin Hamiltonian comprises anisotropy and Zeeman terms (1.1), and the hyper-

fine interaction (1.3),

Hs= —AS?>— guBS, —h-S. (1.4)
The transverse field:, is of little consequence for the energy levels, but it mixes the
angular momentum states and is therefore essential for the dynamics. In accordance with
the estimation given in [26], we will assume the fielgsto be small as compared tb.

At first sight the longitudinal hyperfine fieldl, would seem to be of little relevance; it
merely causes a slight energy shift that is smaller than the sepafafibs 1) A of adjacent
levels M and M + 1. Since, depending on the nuclear spin state, the hyperfine coupling
changes from one spin angular momentuhf) to another(M’), in (1.4) we assume that
it is linear in the differenceM — M’. Since the actual nuclear spin state consists of a
superposition of different one-atom states, we may treakth&s a random variable.

We will see that the nuclear spins play the role of a magnetization reservoir, since they
change, through the transverse couplifig,, the magnetic state of the molecule. They
do not, however, permit energy relaxation, since their level spacings are much smaller than
those of the electron spin, i.e., there is no resonant spin-flip interaction between nuclear and
electron spins.

Relaxation requires contact to a heat bath; this is provided by coupling to the elastic
waves of the host crystal,

V=0(S)) v (1.5)

wheres labels the three acoustic phonon branches with coupling energynd the cor-
responding strain field

ey =3 (A/2NMey) g (ibgs — b)) (1.6)
q
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The factorg arises for quantized acoustic modelij;x[bq's'] = 844855, With wavelengths
larger than the size of the molecule. Because of time-reversal symméfy,must be of

even order in the spin operators. According to the discussion in [26], the most important
term reads

v(S) = S, S; + S8, 2.7)

In this paper we will use two types of spin state, namely the eigenstatgsanid those
of Hs [17]. The former are labelled by capital lettefsf), with —S < M < S; they fulfil
S.|M) = M|M). The energy eigenstatés) are defined byHs|m) = E,,|m). We will use
a notation such that there is a close correspondence between the| &tatesd [m) with
m=M.

Very recently, the relaxation behaviour arising from phonon coupling has been studied
perturbatively in the angular momentum basis [21-23], with emphasis on the transition
between quantum and thermally activated regimes. &udd [22] considered both hyperfine
(or dipolar) interactions (1.7) and a transverse crystal field, and they investigated the effect
of the resonances &, on the relaxation rate and the hysteresis behaviour.

Contrary to that of references [21, 23], our approach is based on the energy eigenstates
of the spin system. One aspect of this choice will be discussed below equation (8.2). We
study in detail the relevant diagrams of the perturbation theory, and we present novel results
concerning the direct process that is predominant at veryZlow particular the magnetic
field dependence of the relaxation rate.

We close this introductory section with an outline of the paper. Sections 2 and 3
provide the formal apparatus for calculating the time evolution of the electron spin system;
after setting up a perturbation theory in terms of the spin—phonon coupling, we evaluate
the rate matrix and the resulting stationary state, and consider the time dependence of the
magnetization.

In the remaining sections, we apply this theory to the;pe molecule, and discuss
the dynamics of the magnetization. Sections 4 and 5 contain an approximate evaluation of
the energy eigenstates and the corresponding transition rates. In section 6 we perform the
averaging over the longitudinal hyperfine field and derive the rates explicitly; the temperature
and field dependencies of the rate are addressed in section 7 and compared with experimental
findings. In sections 8 and 9 we discuss and summarize our results.

2. Time evolution

In terms of the statistical operator, the time evolution of the system is determined by
,6(2‘) — efth/ﬁ'aeth/E = efilltﬁ. (21)

In the second equality, we have introduced the Liouville operdtarhose action is given
by von Neumann'’s equationlp = [H, p]. Here, the Hamiltonian

H=Hy+V =Hs+Hg+V

comprises the spin part (1.4), the coupling term (1.5), and the energy of the uncoupled
phonon bath

Hg =Y " hwg;b}bgs.
qs
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2.1. Perturbation theory

Our evaluation of the spin dynamics is based on standard weak-coupling theory. We assume
that the statistical operator factorizes at the initial time, and we treat the spin—phonon
coupling perturbatively. The factorization property permits us to define the reduced time
evolution operator

Uty = () (2.2

where the angular brackets--) = trg(---pg) denote the partial trace over the bath
degrees of freedom. The average over spin variables with weighill be denoted by

After taking the Laplace transform of (2.2), the propagator can be written in resolvent
form:

UGZ) = —[z4+ A+ @] (2.3)

where A describes the time evolution in the absence of phonon coupling. The self-energy
¥ can be obtained by applying a projection operator technique [27-29], or by performing
an appropriate cumulant expansionéfr) in terms of £Ly. Truncating the perturbation
series at second order, we find

S(1) = (Lye o Ly). (2.4)

The ‘superoperatorg/, A, =, act on the spin degrees of freedom only. From the 21
spin stategM), one may construct Zllinearly independent spin operatass, S, Sg, etc.
A more convenient description, however, is provided by the standard basis operators

Xum = |n)(m]. (2.5)
Expanding the spin state in terms &f,,,, we find
P = Z Pnm Xnm (26)

with p,, = pj,, positive p,,, and t(p) = 1.
Sinceld, A, and T are linear operators on the space spannedXy,}, they are
represented by tetrads with 2% 212 = 214 entries:

Unmpq (1) = tr (X UMD X py) (2.7)

nm

etc. The matrix representation is significantly simplified by the fact that the frequency tetrad
Nomnm = Dum S8y 1S diagonal in the basi¥,,,. Here, we have defined the resonance
frequency

for transition between levels andm. Because of the level repulsion due to the transverse
field, A,,, cannot be zero, but always takes a finite value.

In order to evaluate the self-energy, we tg&, x = [V, %] in (2.4) and thus obtain the
well-known double commutator

Enml’q (I) = h—iztr{xim [V’ eiiHOt/E[V7 X[?quB]eiHOZ/E]} (29)

where tf- ..} denotes the trace over both spin and bath variables. Note that the weight is
given by the bath equilibrium densigys only.

Equations (2.4)—(2.9) summarize the perturbation theory for the dynamics of a few
‘system’ degrees of freedom coupled to a phonon heat bath. For a detailed discussion, the
reader is referred to Haake’s book, reference [29]; results similar to (2.9) have been derived
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for the dissipative dynamics of rotational tunnelling [30], the spin—phonon model [31], and
various other systems.

Now we turn to the self-energy (2.9). Evaluating the double commutator and inserting
the phonon coupling potentidf = > V.. X.. gives rise to a variety of terms. Yet
it turns out that the random phases of tlg, impose severe selection rules. The spin
operators in (1.7) involve the spin—orbit coupling on each Mn ion. Accordingly, the phase
of the matrix elemenv,,,, = (n|V|m) arises from the superposition of phases for each ion
and each phonon mode.

HenceV,,, may be treated as a complex number with a random phase, resulting in the
relation

(VIlm qu) = <|Vnm|2>8nq8mp (210)
which, in turn, restricts the number of finite entries of (2.9) according to
2:nmpq = annmsnpamq + 2:}17117178}'”1181711 (211)

and greatly simplifies the subsequent analysis.

Due to the selection rules af,,,,,, and =,,,,,, the propagator matrig,,,,, is block-
diagonal. Time evolution of the off-diagonal operatofs,,, with n # m, completely
factorizes, i.e., there areS2x (25 + 1) one-dimensional block®V,,.... whose self-energy
involves the first term on the r.h.s. of (2.11). The second term mixes all projections
X,.» = |n){(n| and results in a larger block

Vnm = nnmm (2.12)

of dimension & + 1. Taking this together with thesS22S + 1) one-dimensional blocks
Wmnm, WE Obtain a matrix representation for the propagator:

u=y ® w W= ® annm (213)
n#m

whose dimensiori2$ + 1)? is in accord with the remark above (2.5).

The frequency dependence of the self-energy is determined by the coupled density of
phonon states. Since the latter function varies smoothly with frequency, we may resort
to a Markov approximation, and replace the matrix eleméis) by their values at the
corresponding frequencies df(z).

We start with the oscillatory part of the propagatv, which, in terms of the density
matrix (2.6), describes the time evolution of the off-diagonal operaXgys with n # m.
Phonon coupling leads to a loss of phase coherence, whose rate is given by

1/ Tum = SZmnm (—Dum) (2.14)
The real partshZ,,,.... are negligibly small. Thus we obtain

Womnm (@) = —[z + Ay +1/Tum]
and upon inverse Laplace transformation

Wmnm (£) = €2t gt /om, (2.15)

Note that vanishes in the long-time limit, which corresponds to the vanishing phase
memory fors > 1,,.

The diagonal operatorX,,, give rise to the zero-frequency poles with, = 0, i.e., the
matrix A vanishes in the subspace spanneddby. Accordingly we evaluate the self-energy
at zero frequency,

an = SE:nnmm (Z = 0) (216)



10080 A Wrger

Since ..., (t) is real and an even function of tim&;,,,,...(z = 0) is purely imaginary.
Thus the diagonal part of the propagator re¥ds) = —[z + iR]~*, where bothV(z) and
R = (R,,,) are matrices of dimensions2} 1.

Taking the inverse Laplace transformation, we obtain the formal result

Vi) =er (2.17)

which, again, is to be read as a matrix equation, the argument of the exponential being the
matrix R = (R,,,). Note that the poles oP(z) are purely imaginary, i.e. (2.17) does not
show any oscillations. In physical terms this means that the dynamics is purely relaxational.

2.2. The rate matrix

We complete evaluation of the propagator by calculating the decoherence faigadd the
relaxation rate®,,,, as defined in (2.14) and (2.16), respectively. The double commutator in
(2.9) gives rise to two types of contribution. First, there are terms which read schematically
asXVVX andXXVV and, second, there are terms where the factoere separated by
the standard basis operatossy X V. It turns out that the decoherence ratgs,}, and the
diagonal entries of the rate matrik,,,, are of the first type, and the off-diagonal relaxation
rates,R,,, with n # m, are of the second type. The latter carry a minus sign.

We start with the rate matriR,,,. After inserting (1.5) in (2.9), using the spectral
representation

eiHst — anneiE”t
n

and taking advantage of (2.10), we obtain
S (1) = Y Uni P& ()80 — [0 |€ A 0 (1) + CC (2.18)
k
where the spin part of the coupling potentlalreads in terms of energy eigenstates as

Upm = (n]v(S)|m) (2.19)
and the bath part gives rise to the correlation function
o(1) =)y e, (e, (0). (2.20)

Its complex conjugatec) readsp (r)* = ¢(—t).

Upon inserting the definition of the elastic strain (1.6), assuming isotropic acoustic
waves with the dispersion relatiap,, = v,q, and taking the Fourier transform, we obtain
the bath spectral density

¢ () = raw’[1 + n(w)]. (2.21)
Heren(w) = [ef* — 1]~ denotes the Bose function and
1 2
Ys (2.22)

o6 = _—F —
272 —~ ouoh

a coupling constant with dimension (frequend)o is the mass density. With the shorthand
notation

Com = |vnm|2§0”(Anm) = nlvnm|2aA,3,mn(Amn) (223)
one easily calculates the rate matRy,,. Its diagonal elements

Ryw=Y Tu (2.24)
k



Magnetic relaxation of mesoscopic molecules 10081

may be considered as the widths of the quantum lewgeishereas the off-diagonal ones
an = _an (n 5& m) (225)

describe transitions between stateandm.
Now we turn to the decoherence ratesr,),. Proceeding as above and noting that
Anm + Amk == Ank, we f|nd

1 1 1
= E Z (ka + Fnk) = E(Rmm + Rnn)~ (226)
k

Tl’l m

Equations (2.24)—(2.26) provide an explicit expression for the propagator (2.13), which we
are going to apply to the relaxation of the spin variables.

It is instructive to consider the stationary solution of the propagétey. Since the
off-diagonal partV decays exponentially, we have to look for a set of occupation humbers
Pn = Pun = (Xun), fulfilling p, = 0. The equation of motion fop(r) = V(¢)p(0) leads to
the well-known Master equation

pn = Z (anpm - anpn) (227)

m

The stationary solution, or equilibrium distribution, is given byw = 0, which leads to
the detailed-balance conditiopﬁeq)/ pf(ne = Cum/Uwmn = exp[—B(E, — E,»)]. Thus any
initial state p will relax towards the equilibrium distribution

0 — Z pEIX,,. (2.28)

In principle, the relaxation behaviour could determined by diagonalizing the time
evolution operatorV or, equivalently, the rate matriR, and expanding the initial state
p =, PnXun, OF p, in terms of the eigenvectors. In practice, such a procedure is suitable
for a few system states, say not more than four. (Compare this with the treatment of the
dissipative two-state system in reference [31].) Yet it is of little use for the present problem
concerning 8 + 1 spin states with, e.g§ = 10.

3. Magnetic relaxation

The previous sections provide the formal apparatus for the dissipative dynamics of the

magnetization of a My3O;, molecule. Before discussing relaxation phenomena, it would

seem useful to consider the time evolution of the magnetization for a given initial state.
The magnetization along thedirection is given by the expectation value

M(1) = (S:(1)),- (3.1)

The representation of, = > = M,,X,, in terms of energy eigenbasis involves the
coefficientsM,,, = (n|S;|m). When inserting the initial state (2.6) artd in (3.1), we
find two different contributions:

M(t) = Z Mnmw(nm)(t)lonm + Z Mnnvnm (t)pmm (32)
n#m n
which evolve in time according tyV andV, respectively.
Since bothp and M are Hermitian, the first part gives rise to terms oscillating with
frequenciesA,,, and whose phase coherence is lost after a tupe In general there
are many frequencies superposed; yet with an appropriate choice for the initial state, it
is in principle possible to retain a single frequency. The oscillating part vanishes for a
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state which is diagonal in the energy representatipss Y, 0., Xn,. These oscillations

of the magnetization could be probed by means of an appropriate time-dependent external
field. It turns out, however, that there is little hope for observing such coherent motion;
cf. section 8.4.

The second term in (3.2) is more relevant for our purpose. It describes how the

magnetization tends towards its equilibrium value
MED — Z Mnnpy(;q)- (3.3)
n
In general, this relaxation process is not uniform but occurs with rates which are given by
the entries of the matrix.

There are two basically different timescales. The shorter one is given by the relaxation
within one well, involving transitions between statesandm with similar magnetization
M,, =~ M,,,,. The corresponding rates are of the orderRgf, i.e., they involve the largest
[,..; from (2.26) it is clear that this fast intrawell relaxation occurs on the timesgalg, 1
The second characteristic time involves relaxation from one well to the other, i.e., it requires
transitions between states with very different magnetization. We will see below that the
corresponding transition ratds,,, are much smaller thar,,,,.

As discussed below (3.3), the relaxation behaviour in @& + 1)-dimensional spin
space cannot be solved analytically. Yet the existence of two separate timescales permits
us to reduce the number of variables. In view of the experimental situation, we are not
interested in the occupation of each lexelbut rather in the relative probability of finding
the molecule in the left-hand or in the right-hand well.

The physical meaning of the double-well picture consists in positive and negative
magnetization. A sound criterion for separating the{21 states in two sets is provided
by considering the magnetizatidd,,, = (n|S,|n) and by relating the probability of finding
the system in the left-hand well to a negative valueVf;:

Q = Zp[ for My < 0 (34)
!

and similarly relating the occupancy of the right-hand well,—1Q, to a positive
magnetizationM,, > 0. This definition is meaningful for finite magnetic field only, since
M;; = 0 for all [ in a strictly symmetric potential. Even fa& = 0, however, the symmetry
is broken by the random hyperfine field; as a consequence, the case whifie= 0 is
marginal, andQ takes in general a finite value.

When inserting the Master equation (2.27) in the time derivative® pfve obtain

Q:Fi(l—Q)—UQ (3.5
where we have defined the rates

Iy = (Z P1F1r>/ ZPI = éZszr (3.6)
Ir / Ir

andI'; with / andr exchanged, an@ replaced by - Q. Note that, even forQ = 1,
there is a small probability of finding the system in the right-hand well, since the energy
eigenstate$n) are never completely localized in one well.

These rates do not depend on the occupaficyBecausel';y > T}, the ratiop;/pr
is constant on the timescalg I, . In physical terms this means that thermal equilibrium
between the states within the left-hand well is satisfied almost instantaneously, whereas
the equilibration of the two wells takes a much longer time of abgut 1 The rates";
andI', are weighted averages of tlig,,. As a consequence, they do not satisfy a simple
detailed-balance condition, contrary to thg,.
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In the two-well picture, magnetic relaxation is determined by the initial vali® =
(S.(t =0)),, the equilibrium value (3.3), and the rafe=I") + I';, according to

M) = M© +e " (M — M), (3.7)

In the most common experimental situation, the system is initially localized in the left-
hand well, i.e.Q = 1. After reversing the sign of the magnetic field, however, thermal
equilibrium favours the right-hand well. In (3.7) this means th&t” < 0, M©9 > 0, and
Fr~T;>»T;.

4. Energy eigenstates

The formal approach of the preceding sections strongly relied on the energy eigepstates
Since the dominant part of the energy, equation (1.1), is diagonal in ter§s thie angular
momentum states form a most convenient basis,

n) =Y ey’ IN) (4.1)
N
with the defining equatiors,|N) = N|N). In principle, the Hamiltonian can be written
as anS-dimensional matrix that yields, upon diagonalization, the energiesand the
corresponding eigenstatés) in terms of the expansion coefficientfs;’). The latter have
been discussed in detail in reference [26]. Here, we will adopt a simple approximation
which retains, however, all features relevant for calculating thelrate

4.1. Pairs of resonant states

The energy scale of the diagonal part of the Hamiltonianis larger than the off-diagonal
one, h,. As a consequence, the energy eigenstates differ very little from the angular
momentum states, i.e., in (4.1) there is one coefficient that is close to ur,‘ﬁfy,% 1.

The remaining ones are at most of the orderhQf A, which is small,|c§\’,”)| < 1 for

N # M. Hence the eigenstatém) are well approximated by the correspondiig), and

the levels fulfil E,, = Ey + Mh, up to corrections of the ordér?/A.

L

R" M- = —

L , | _
R - - —

L | -
R _ — _

Figure 1. Angular momentum and energy eigenstates.

For certain values of the magnetic field, however, the states in the left-hand and right-
hand wells, i.e., with negative and positive magnetization, form pairs of nearby levels, as
shown in the left-hand part of figure 1. Then the expansion in (4.1) comprises two significant
coefficients,L and R, or L’ and R’, etc. The remaining terms are negligible. Hence we
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may truncate the Hilbert space to a resonant pair of states, with an effective Hamiltonian

matrix
E.+Lh, 1Q
H= ("1 e 2t (4.2)
5S2LR Egr + Rh,
where Ey = —AN? — guNB. The off-diagonal terms are calculated perturbatively in

powers ofs,/A; we quote the result

2A S+ NS =M [ h AN\
Qyvy = — 4.3
N (N—M—l)!z\/(S—N)!(S—i-M)!<2A> (4.3)
for N > M [7, 21].
After subtracting the average energy and defining the asymmetry energy

ELRZEL—ER+(L—R)I’ZZ (44)

one easily calculates the eigenvalues of (4.2)
1 1

EizE[EL—l—ER—l—(L—}—R)hZ]:I:E,/Q%R+G§R (4.5)
and the corresponding eigenvectors

|[+) = u|L) +v1— u?|R) (4.6)

|=) =v1—u?lL) —ulR) (4.7)

where we have dropped the labdl® and defined the quantity

, 1 €
=31 =) “9)
Corrections to the approximate energigs and eigenstatelst) are of the order oth,/A).

The coefficientu has been chosen such that, for positiye, the state of the upper
level |+) has a larger amplitude in the right-hand well, and the lower in the left-hand well;
we will use the suggestive notation

1) = 1F) Iry =1£) fore.r = 0. (4.9)
(For the marginal case of zero biag,z = 0, the two states have equal amplitudes in the
two wells, |[+) = 2-V2(|L) &+ |R)).) Equation (4.9) ensures that the angular momentum
states|L) (or |R)) provide the largest amplitude to the energy eigenstatg®r |r)).

The right-hand part of figure 1 illustrates the hybridization of resonant levels. The states
I,r,l',r, ... are no longer localized in one well or the other; yet we have indicated the
smaller amplitude by a broken line on the left- or right-hand side. According to (4.9), we
have plotted the levels for positivg . A negative value would result in an exchange of
the labeld andr, etc, and of solid and broken lines.

The superposition of resonant states is essential for two physical effects. First, it lies
at the origin of level repulsion; when switching the magnetic field through a resonance, no
real degeneracy occurs, since the off-diagonal enef@jgg provide a minimum splitting.
Second, the amplitudes and +/1 — u?2 describe the mixing of states from different wells,
and thus give rise to relaxation from one well to the other.

5. The transition rates T',,,,

According to (3.6) the magnetic relaxation behaviour is determined by the off-diagonal
entries of the rate matrixX;,,,. In view of (2.23), we need to calculate the energy difference
A,n and the coupling matrix elemeny,, as defined in (2.19). In the following, we discuss
the rates for transitions between energy eigenstates in the two wells.
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Figure 2. Phonon-assisted transitions between energy eigenstates. For details see the main text.

5.1. Intrawell relaxation (1)

First we consider transitions between stgiésand |/’) that have a larger amplitude in the

left-hand well; cf. (1) in figure 2. These rates dot contribute to the relaxation into the

right-hand well, but govern how thermal equilibrium is reached within the left-hand well.
According to the above discussion, we have

1) = v1—u?|L) + u|R)

and a similar expression fg¥’), with amplitudesu and «’ given by (4.8) for the pairs
L,RandL + 1, R — 1. With the matrix element of (1.7) connecting angular momentum
eigenstates,

(N +1pIN) = (N + 1) /S + D = NV +1) = e (5.1)
one easily finds

vy = cpy/ (L —u?) (1 —u'?) + cruu’. (5.2)

For positive asymmetry energy one quickly reaches the rangeu’ <« 1 where the second
term is of little significance. Except for marginal cases, the approximate expression

v ~ (L + %)\/S(S +1)— L(L+1). (5.3)

correctly describes the rate. Since the hybridization energy is much smaller than the diagonal
terms, the energy differenc;; is well approximated by

As is clear from (2.24) and (2.26), the intrawell relaxation rates determine the level width
R, and the characteristic time for the loss of phase memory of the tunnel oscillatigns,
With the parameters discussed below, one finds typical values®fL0% s1.

5.2. Non-diagonal resonances (2)

Now we turn to transitions from states mainly localized in the left-hand well, I”, .. .,
to those in the right-hand welk, ', r”, ...; cf. (2) in figure 2. A particularly interesting
situation arises for a magnetic field close to the resonant values defined in (1.2).
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Naively, one would expect transitions through resonant level paissr, I’ <> r/, etc,
to be the most significant. It turns out, however, that this is not the case; the magnetic
relaxation behaviour is governed by transitions like- r’ andl’ <> r, i.e. between states
that belong to adjacent resonant pairs (cf. figure 1).

We first consider the rat€&,,~, which depends on the energy differensg. and the
matrix element of the operator (1.7),- = ({|v(S)|r’). The former differs little from the
energy difference of the corresponding angular momentum eigenstates

Ay ~ (E, — Eg + Lh. — R'h,) /R (5.5)
whereas the matrix element. reads with (4.8) and (5.1) as

v = cruy1—u? —cp_1vV/1—u?. (5.6)
With A,; = —A,;- we find the transition rate
Ty = mv2.a A% n(A). (6.7)

At resonance¢ = 0 = ¢/, we havev,,, = %(cL — cgr_1). In real systems, however, this
case is marginal, because of the random hyperfine interastior{See section 6 below.)
As a consequence, the matrix elemept is in general much smaller than unity, contrary
to the case for intrawell transitions, wherg is of the order ofS%2, for not too small|/|.

The rate (5.7) is smaller by an overlap fact@(1 — «'?) than that for intrawell relax-
ation. This is why the interwell relaxation is so much slower than the motion within one
well.

5.3. Direct resonant transitions (3)

Finally we consider phonon-assisted transitions within a resonant level pair;, labelled
(3) in figure 2. Although formally identical to (5.7), the corresponding rate is much smaller,
since both the matrix element. and the energy difference

hAy = v Qg +eip

are significantly reduced.

At very low temperatures and small magnetic field, however, the non-diagonal
resonances become ineffective, because of the exponentially small factorg. Then the
resonant rate between the ground states in the two wells;-10 andr = 10, dominates
the magnetic relaxation behaviour. (We recall that denote energy eigenstates, whére
has a larger amplitude in the left-hand well, anith the right-hand one.)

Therefore we evaluate (4.2)—(4.9) for the special case wRere—S, L = S, and small
but finite magnetic fieldguB <« A. With Q@ = Q_s s ande = E_gs — Eg — 25h,, where
E_s — Eg = gu2SB, the two-state Hamiltonian reads as

H=%(§2 i). (5.8)

With the matrix elementy = (I|v(S)|r) and the energy splitting of the ground states
hA = /Q2 + €2, we obtain the rate for direct transitions

Cgir = mv2a A3[n(A) +1]. (5.9)

Now we are going to evaluate the phonon scattering matrix element connecting the
ground-state doublet;. Unlike in the cases considered above, it is not sufficient to retain
the amplitudes of two angular momentum stat®¥s= +10; in order to obtain a finite,
we have to take into account the amplitudes of the adjacent statest9 as well.
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The amplitudes of the lowest angular momentum stgfgsand | — S) are determined
by the two-state Hamiltonian, and readand /1 — u2. Since the transverse fiel§i s, is
smaller than the energy difference of adjacent angular momentum states, the coefficients
for N = £9 can be calculated perturbatively in termsSQf:, or, more precisely, in terms
of the small parametexr = (N = 10|S,4,|N = 9)/(Eg — E10). Starting from the largest
amplitudesu and+/1 — u?, we find

(0] / (r) ) (r)
clo=V1-u?=cyp Cl0=4="C10
Yy =xvV1-u2=cy e = xu=—c"),

The remaining amplitudes with-8 < N < 8 are of the order ok? and hence may be
neglected. The coefficients (5.10) are normalized up to corrections of the ©rder
Now it straightforward to calculate the matrix elemant= (/|v(S)|r). Inserting the

small parameter
A/ S/2b,

(5.10)

== 5.11
YT 2s—1a (5.11)
the matrix elementN = 10/{S,, S;}IN =9) = (S — %)\/25, and the square of the overlap
1 Q?
2 2
we obtain an explicit result:
v? = (§ — 1/2)228x%u?(1 — u?). (5.13)

Inserting this in (5.9) and dropping terms of the ord¢s,lwe find the rate for direct
transitions between the states of the ground-state doublet:

Cgir = 7(Shy /A (/M) Aln(A) + 1]. (5.14)

Anticipating a more detailed discussion to be given below, we remarK'thas independent
of the magnetic field and proportional # for 2Sgu|B| < kgT, whereas it variefinearly
with B and is constant with respect 10 at very low temperaturess T < 2Sgu|B].
We briefly discuss two discrepancies between the rate (5.14) and previous results
[17, 24, 26], concerning the dependence on the magnetic Bield

(i) In these studies, a quadratic laW, c B2, is derived for the most relevant case,
that where 3guB < kgT, and a cubic law]" o B3, for kgT < 2SguB. This result is
obtained from an expression that, for finite magnetic field, is identical to our equation (5.9),
with A ~ 2S5guB > Q. As is obvious from (5.12), however, the overlap matrix element
connecting the left-hand and right-hand states providesg fer 2SguB > 2, a factor
Q?/€2; this additional factor reduces the power Bfby 2, and leads to a rate independent
of B for € < kgT, and a linear variation in the opposite case.

(i) The rate of reference [17] vanishes in the limit of zero field, whereas our expression
tends towards

Tair = 7 (Shy/A)2a(Q/B)3[n(2/R) + 1] (B =0). (5.15)

In [17], this constant term is missed since the perturbation expansion is carried out in terms
of angular momentum eigenstatg$é). Hence the energy splitting of resonant states does
not account for level repulsion due to the finite off-diagonal enefgy Accordingly, at

zero magnetic field the phonon spectral density is evaluated at zero frequency, resulting in
a vanishing rate, whereas our rate remains finit® at 0.
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In summary, our results differ from that obtained in [17, 24, 26], since in these studies the
magnetic field dependence of the factérhas been neglected. Moreover, our perturbation
expansion is based on energy eigenstates, rather than the angular momentum basis used
in [17].

6. The average over the hyperfine field

The fieldsh, andh, introduced in (1.3) account for the hyperfine interaction of the nuclear
spin, with I = 2 for %*Mn, with the electronic sping = 2 for Mn®*" ando = 3 for
Mn**. Whereas for a single Mn atom, this coupling is simply given Ayo - I, a
more complicated situation is encountered in the case of the;®p molecule. The
strong magnetic interaction favours collective spin states With 10 that are only weakly
perturbed by the nuclear spins.

Hartmann-Boutroret al [26] have studied in detail the level splitting and degeneracies
resulting from the hyperfine interaction. They find that coupling to nuclear spins gives rise
to a few hundred levels spread over an energy range of about 1 K; the hyperfine field takes
values of the order 0.1 T.

Here, we neglect the microscopic structure of this coupling. Instead, we use the simple
form (1.3) with random field&, andk,. The hyperfine interaction has two physical effects.

Its off-diagonal part:, S, mixes the angular momentum states, whereas the diagonal term
h,S, acts as an additional magnetic field along the magnetization axis.

The values of the fields, and., depend on the nuclear spin state of the 12 Mn atoms
which varies from one molecule to another and as a function of time. In order to account
for the resulting randomness, we introduce a distribution law for the hyperfine fields. The
actual discrete spectrum is well approximated by a Gaussian [26]:

2

1 h;
P = ot 550) ©

whereb; / kg is of the order of 0.1 K.

The average ovek, concerns the off-diagonal energi®s,,,, as defined in (4.3). We
will assume that th&2y,, involve already the properly averaged fields, i.e., we replace
by b,.

We are rather interested in the dependencehorof the phonon scattering matrix
elementsy;,.. The fieldh, adds a random component to the static magnetic fieldAcc-
ording to (4.4), this results in a distribution for the asymmetry enetfgy between the
resonant statefl.) and |R). On the other hand, this random field is irrelevant for non-
resonant levels, sinde is significantly smaller than a typical level spacibg; .

As a result, the average ovir concerns the matrix elementg, for the non-diagonal
resonances, equation (5.7), whereas in the direct transitions, equation (5.14), it merely affects
the level spacing\;,. The intrawell relaxation is hardly modified by the hyperfine field.

6.1. Non-diagonal resonances

The average ovek, in v,zr, concerns the asymmetry energiesande’ in the amplitudes:
andu’ of equation (5.6). The ensuing integral

/dh P (h)v?

could be calculated numerically; yet a slight simplification of the field dependence will
permit us to obtain an analytic result.
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We start with a few remarks concerning (5.6). (i) Except for very large magnetic fields,
we havec; ~ —cg_1. (ii) For states not too close to the top of the barrier, we have
Qrr < b, resulting inu < ' <« 1fore > 0 and(1—u?)Y? « 1 -u?1? « 1 for
€ < 0. As a consequence, we may replacby ©(—¢) and (1 — u?)Y/2 by ©(¢). With (i)
and (ii), the average? reads as

v = %(CL —cre1)? {u’2®(6’) Fa- u’2)®(—6/)} (6.2)
with
7@ = [ an pangan.

From (4.8) it is clear that the expression in brackets is sharply peaked about
e=FE; — Er + (L, — R/)/’l ~ 0.
Since the weightP (k) is a much smoother function, it may be evaluated at
h=—(E, —Eg)/(L' — R).
The remaining integral is equal @', resulting in
L — R
Note the correspondenée> L, !’ <> L', etc. Primed quantities such &S refer to resonant
angular momentum statds and R’; cf. figure 1. The asymmetry is the same for all such
pairs. o
The averaged matrix elemep# shows two remarkable features, as a functiorm ahd
€. For small asymmetry, i.e., close to resonance, the quarti®y takes its maximum
value. As soon agE; — Eg/| exceeds the hyperfine field? falls off quickly.
The energy distance for transitions through non-diagonal resonatigess of the order

of SA, which is much larger than the hyperfine fiéld Hence the average of the rate (5.7)
reads as

1
Ulzr/ = Z(CL — CR]_)ZP( (63)

Ty = vl aAdn(A). (6.4)
The main effect of the hyperfine couplirkg consists in a broadening of the resonance as a
function of the biag o« B — B,. Forh, = 0, the factorv2, would give rise to a sharp peak
of width Q" ate = 0, i.e. at the resonance values of the magnetic field’he presence of
h, leads to a distribution of such resonances with wiklthAs a consequence, the rdig
shows a broad bump as a function®fabout the values; defined in (1.2); the maximum
value is reduced by a facta®(0)Q2' = (/7 b,).

6.2. Direct transitions

Finally we consider how relaxation through the direct process between the ground-state
doublet is affected by the hyperfine field. The rate (5.14) depends through the energy
hA = /Q2 + €2 in the factorA[1 + n(A)]. At finite temperature the rate

Tair = m(Sby/A)?a(2/h) ks T /T (hA < kgT) (6.5)
depends on the off-diagonal elemdntand T only.
In the limit of zero temperature, the nuclear spins are frozen in the ground state with

respect to the hyperfine coupling, ahdis no longer a random variable but takes a fixed
value. The resulting rate reads as

Tair = 7(Sby/A)?a(2/h)?A (T =0) (6.6)
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with 7A = /Q2 + (guSB)2, where the magnetic fiel# may include a small contribution
from the hyperfine coupling.

7. Discussion

Here we discuss our formal result (3.6) as regards its dependence on temperature and
magnetic field. We focus on the range of parameters that are covered by available exp-
eriments. For a discussion of the parameters, see section 7.4 below.

According to (3.6), magnetic relaxation is governed by a weighted average of the rates
I';,. When starting from an initial state where only states localized in the left-hand well are
populated, we have@ = 1. For times that are not too long, the rate is given by

ry =) ply, (7.1)
Ir

where the bar denotes the average over the hyperfine/fielore explicitly, these initial
conditions mean thap, = 0 for all  in the right-hand well, whereas the states in the
left-hand well are occupied according po-_s ~ 1 andp; « 1 for/ > —S.

As discussed in the preceding section, both direct transifieas-r and non-diagonal
resonances = —r + 1 may contribute significantly to the double sum in (7.1). Except for
very low temperatures and small magnetic field, however, the direct ones are irrelevant.

7.1. Magnetic field dependence

Figure 3 showd; as a function ofB, for several temperatures varying from 2 to 3 K.

As discussed above, the rate is strongly enhanced at the values (1.2) of the magnetic field.
According to (6.3) and (6.4), the shape of these resonances is determined by the distribution
of the hyperfine field P, (k,), and their width is given by,.

10 §

0.01

Rate (sec’ 1)

0.0001

108 [\ -
L L | |

0 1 2 3 4
Magnetic field guB/A

Figure 3. The magnetic relaxation rate (7.1) as a function of the external fiefdr several
temperatures. The parameters used are discussed in section 7.4.
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Besides the strong enhancementBat= B,, the rate shows an overall increase as a
function of the magnetic field, since the number of intermediate states decreases in the
perturbation series foR2; g, thus enhancing the off-diagonal matrix elemexg.

The curves plotted in figure 3 account for data observed by several groups [12-15].
The dependence oB and T agrees qualitatively with that reported in [13], although the
variation withT is somewhat stronger than is shown by the data, and the resonance shape is
not quite the same. A possible enhancement of the rate at the even resahan€eg, . ..
due to a transverse crystal field is discussed below.

5

10

T=2 K
10—6 L /—\ _
19K
a0 b -
(8]
o
~ 1.8K
Q
T -8
& 10® - 8
1.7K
109 - s
1.6 K
1070 I I I ! I
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Magnetic field guB/A

Figure 4. The magnetic relaxation rate (7.1) as a function of the external field cloBe=td)
for several temperatures. The parameters are discussed in section 7.4.

When considering the field dependence more closely, one finds that the maxima do
not occur atB = By, but are shifted to slightly higher values of the magnetic field. This
asymmetry is shown in figure 4 for the resonance atiut O at several temperatures. The
physical mechanism for this effect is most easily understood in terms of figure 2, with the
initial state/ = —S. The most efficient relaxation channel involves the excited resonance
labelled (2). For small but positive magnetic field, the activation energy is reduced by
2Sgu B, and the rate increases accordingly; as soon as the field exceeds the longitudinal
hyperfine couplingi,, the overlap matrix element? is strongly suppressed. Thus the
maximum occurs aB ~ b,.

Barbaraet al [16] have studied the asymmetry of the resonanceé at 0 in detall,
and found a behaviour similar to that of figure 4, though the observed maxima are more
pronounced than those in our figure. (Compare this with the remark in section 7.4.)

In the limit of zero temperature and finite but not too large magnetic fi@ld<
2guSB « A, the relaxation is governed by the direct r&lg. In this range, we expect a
linear variation of the rate with the magnetic field:

Cgir < 2°B (T =0) (7.2)

according to (6.6). This linear law arises from the product of two factoiin Evaluating
the cubic bath spectral density (2.21) at the ground-state splitirg2Sgu B /h gives rise
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to B3, as derived in [17]; there are, however, the overlap matrix eleméiis— u?) in v?
that give, fore = 2SguB > , a factorQ?/(2SguB)?, according to (5.12).

Equation (7.2) is valid fokgT < 2SguB; in the opposite case the magnetic field has
to be replaced by temperature:

Cgir  Q°T (2SguB < kgT < A) (7.3)

resulting in a rate that is independent of the magnetic field. Notelthats significantly
smaller than the rate derived in [17, 26].

7.2. Temperature dependence

Each contribution to the relaxation rafg consists of two factors that both depend on
temperature First, the occupation number;, o« exp(—E,;/kgT) varies exponentially with

the energy distance from the ground state in the left-hand well. The higher the energy of
the excited staté;, the smaller the corresponding Boltzmann fact®econdthe variation

of the transition ratd’,, with [ andr arises mainly from the factof2 in the averaged
overlap matrix elements? « PS. The Bose factor that accounts for the different weights
of phonon emission and absorption gives rise to a temperature dependence.

0.001

Rate (sec’ 1)
-
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1071t
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1/Temperature (K%

Figure 5. The magnetic relaxation rate (7.2) as a function of inverse temperature. The parameters
are discussed in section 7.4.

For B > 0, the rate (7.1) may obey various laws as a function of temperature. AfjJow
the behaviour for a magnetic field above the first resonant vgjus, > A, is very different
from that at smaller field. For this reason, we discuss the two cases separately. Numerical
results obtained from equation (7.1) for several value® afre plotted in figure 5.

7.2.1. Small magnetic field.We start with the case wherB <« A/gu. In the limit of
very low temperature, the Boltzmann factgrsof all excited levels vanish, and the rate is
determined by transitions between the ground states in the two wells-S andr = S,
that are almost degenerafeA s s < A; as a consequence, the factor arising from the
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phonon spectral density is very small. The resulting &g is constant at” = 0, and
varies linearly with temperature at fini#e as discussed above. Relaxation occurs on a very
long timescale that may well not be accessible experimentally. This rang# gsible in
figure 5, since the ratEy is out of the range shown by orders of magnitude.

As temperature increases, non-diagonal resonances, such asfrenf tor = § — 1,
orl=—-S+1tor =S, become more efficient. The resulting rate obeys an Arrhenius law
with activation energy = E_g,1 — E_g = (25 — 1)A. The curve forB = 0 in figure 5
shows precisely this behaviour in the range below 1.5 K.

On further increasing the temperature, however, transitions between resonant level pairs
not far from the top of the barrier prevail, because of the much larger oveflas a
consequence, the relaxation rate shows activated behaviour with an enef@gythat is of
the order of the barrier heigts? A.

Arrhenius behaviour with two different activation energiesat 0 has been observed
by Barbaraet al [16]. There is a slight discrepancy concerning the crossover temperature;
the change in the activation occurs at 2 K, whereas from figure 5 one finds rather 1.4 K.
(Compare this with the remark in section 7.4.)

7.2.2. Finite magnetic fieldguB > A. At low temperature, the behaviour is very
different from that observed at small field. The relevant transitions occur frem—S
tor=S5,8S-1,S—-2,...for B~ By, with J = 1,2,3,.... Accordingly, the phonon
spectral densityp” has to be evaluated at energias that are of the ordef A, and the
resulting rates are larger than in the case wiere 0 by many orders of magnitude.

For temperatures well below the first excited levgl] « SA, the rate is constant;
this behaviour is shown in figure 5 below 1.5 K. With (5.7)= —S, r = S — J, and
B ~ JA/gu, the relevant contribution td', reads as

2 3
F—S,S—]+1 = ”U—s,s—1+10‘Ar'1- (74)

Hence the dominant transitions dot occur between degenerate level§ andS — J, but
from —S to thatbelow S — J. Going fromJ to J + 1 enhances the rate by about two
orders of magnitude, since the overlap matrix elements_,1 strongly increases with
decreasing! — r| = 2S — J.

Above 1.5 K, relaxation from excited levels>- —S becomes relevant. Since transitions
close to the top of the barrier are most efficient, the rate shows Arrhenius behaviour:

Fi = FoeXK—V/kBT) (75)

where the activation energy is given by the energy of the lowest level in the left-hand well,
V = E_g.

The absolute value af_g = —S?A + SguB decreases with rising; therefore a finite
magnetic field lowers the effective activation energy. This effect is clearly seen in figure 5,
where the temperature dependence of the rateeaBd¥ is well described by

V = S%A — SguB. (7.6)

Activated behaviour of the rate has been reported by several authors [9, 10, 12-16] for
MniAc in the temperature range from 2 to 10 K. The activation energy ef 61 K at
B = 0 agrees with (7.5). There is some evidence that increasing the magnetic field reduces
V [10], in accordance with (7.6).

As discussed by Villairet al [19], the prefactor of (7.5) is given by the ratEs close
to the top of the barrier. There is no rigorous way of mapping the exact expression (7.1)



10094 A Wrger

onto the simpler law (7.5). Yet it is clear thBp is approximately given by the transitions
from/ =0tor =1 [19]. Insertingvd; ~ S?(Q3,/A3,), the corresponding overlap energy

Qo1 =b/S(S+ 1)
and level splittinghAgy ~ A, we find
To ~ maS?Q5, AR = naS3h? A /R°. (7.7)

At first sight, the Arrhenius law shown in figure 5 is somewhat surprising since each
contribution to (7.1) involves a level spaciny, that is at most of the ordefA. As
pointed out above, the matrix elemenfsstrongly favour transitions close to the top of the
barrier; the temperature dependence of the corresponding population facfiees rise to
the activation energy .

7.3. Quatrtic corrections to the crystal field

Regarding the crystal field in the energy (1.1), we have retained the quadratic term along
the easy axisS, only. Here we briefly discuss the relevance of higher-order components,
both parallel and perpendicular to theaxis. For symmetry reasons, these terms are of at
least fourth order in the spin operatd§s

The energy levels of a MpAc molecule are well described by the crystal-field and
Zeeman terms (1.1), which are diagonal in the spin compofientYet there is some
experimental evidence that the quartic correction

— AgS? (7.8)

is not really negligible as compared to the quadratic temnSf. From EPR data [9],
Hartmann-Boutroret al derived A4/A ~ 0.006 [26]. With such a finite quartic term, the
resonances of angular momentum states/) and |M — J) do no longer occur aB; as
given in (1.2), but at several valuds (M) spread abouB;.

In figure 6 we plot the rate arising from (1.4) supplemented with a quartic contribution
—A4S%, whereAs/A = 0.002. There are two sets of resonances at 1.4 K the rate is
maximum at values foB of about 14A/gu and 27A/gu. With increasing temperature,
the maxima are shifted toward® = B,. Such a behaviour has been reported by Barbara
et al [16]. Though smaller by a factor of 3, our value fd5/A is of the same order as that
derived from EPR data [9, 26].

The transverse terms, i.e., those involvistyand S;‘, give rise to an off-diagonal part
of the Hamiltonian that reads, in terms of angular momentum states,

—C(S% +5Y). (7.9)

Unlike the hyperfine interaction (1.3), the transverse crystal field (7.9) mixes only angular
momentum states with M = +4. Hartmann-Boutroret al [26] have studied in detail the
energy eigenstates and the relaxation dynamics arising from a phonon coupling potential
(1.5) with various choices for the operato(S).

When using (7.9) instead of the transverse hyperfine coudlihg, we would find a
very different behaviour for odd resonancés= 1, 3,5,... and even oned = 2,4, ...
in (1.2). In fact, the relaxation rate would be large at the even ones, whereas the odd
resonances would be blocked.

Since such an effect is hardly visible in the data reported in references [13, 14], we
conclude that the transverse part of the Hamiltonian is dominated by the hyperfine coupling.
On the other hand, the data of reference [15] show, at 2.1 K, a rate that is larget at
than atJ = 1; yet this discrepancy arises at 2.1 K only—for higher temperatures the value
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Figure 6. The relaxation rate as a function 8f as in figure 3, but with the finite quartic term
(7.8). For the phonon coupling, we have used: 1.25 x 1033 &2,

at the resonances increases withAgain, this would indicate that there is a small but finite
transverse crystal field. In a very recent paper, latial have investigated the interplay of
such a quartic transverse crystal field and hyperfine or dipolar interactions [22].

7.4. Parameters

Finally we discuss the parameters used for our plots. The parameter of the crystal field
A takes a value of about.® K [9]; our values for the hyperfine fields, = 0.45A4 and

b, = 0.15A are close to that obtained by Hartmann-Bouteiral [26], b = 0.15A. The

better agreement with experimental data is the reason for our chdgsthgee times larger
thanb,.

We suspect that the simple form of the longitudinal hyperfine coupling is responsible for
this discrepancy. The actual interaction with nuclear spins may well be more complicated
than (1.3); cf. appendix E of [26].

The phonon coupling constant (2.22) provides an overall factor for the rate; its dimension
is (timeY. With the exception of in figure 6, we have put= 1.25x 1037 §?, corresponding
to an elastic deformation potentipl kg of about 0.1 K. When taking account of the factor
532 carried by the matrix element (1.7), we find a value between 1 and 10 K, which
is identical to the deformation potential given by Abragam and Bleaney for spin—lattice
coupling of rare-earth ions (cf. section 10.4. of reference [32]).

We should note that the agreement with a given data set could be significantly improved
by varying the parameters. It is worthwhile to mention that the crossover temperature of
figure 5 could be adjusted to the observed valti@ & with a larger value ob,. On the
other hand, this would lead to much too large a prefattprAgain, both features could be
improved by introducing additional parameters, e.g., a finite transverse crystal field (7.9).
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8. Miscellaneous comments

8.1. Perturbation theory

Our perturbation theory of the reduced propagator constitutes a controlled approximation
in terms of the spin—phonon coupling. It is essential that the perturbation expansion is
performed in theenergy eigenbasisf the spin system, rather than in the angular momentum
states. As a second approximation, we have expanded the coefficients of the energy eigen-
states in terms of the small energi®gs,, and retained the leading contributions only.

To second order in the phonon coupling, the dynamics of the off-diagonal basis operators
X.m, With n # m, is such that they decouple from the diagonal ogg, As a consequence,
the Liouville matrix factorizes into two corresponding blodkandWW. We emphasize that
this decoupling occurs only in a Liouville basis,,, composed of energy eigenstates of
the spin part of the Hamiltonian.

The choice of the energy eigenbasis permits us to avoid a problem that is encountered
when using the angular momentum eigenbasis. To see this, we note that the overlap matrix
elementsy, /1 — u?, etc, in (5.6) give rise to factor similar to (5.12). Thus the rates read
as

Qg
F[, X QE,R, n GE,R, F[/ (81)
where is the off-diagonal matrix element. = guB(L’ — R’) is the asymmetry induced
by the magnetic field, anfl;; is the level width of the quantum state Thus in the limit
where B = 0 and in the absence of a longitudinal hyperfine field, the rate for transitions
from the left-hand well to the right-hand one is roughly identical to the level width; for
large B the rate is proportional t®?,,, /€2 ..

Very recently, a related problem has been tackled perturbatively in terms of the angular
momentum basis [23]; the resulting rate for transition between excited states reads in our
notation

2
Q2

'« /——————
2 2
Ify +eip

Cyyp. (8.2)
Hence for zero fieldd = 0, i.e.e = 0, and small level widthl";; « Q. r, the relaxation
rate is inversely proportional to the width, oc 1/ 'y, which is clearly unphysical. (For
vanishing phonon coupling, one findg, — 0 and hence a diverging relaxation rate
I' — o0.) This problem arises sinc@? is missing in the denominator of (8.2).

Garanin and Chudnovsky studied the present problem using perturbation theory for the
angular momentum states [21]. By mapping the relaxation between molecular states on a
corresponding conductance problem, these authors perform implicitly a partial summation
of the perturbation series and hence avoid the above shortcoming of the angular momentum
basis.

Since it is based on energy eigenstates, the present approach does not encounter such
a diverging energy denominator; in second order it already gives the correct result in the
limit of zero field.

8.2. The nature of resonant transitions: the hybrid process

As a most striking feature, the relaxation rate shows resonances at those values for the
magnetic field where the levels in the left-hand and right-hand wells cross. The origin of
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these resonances may be traced back to the overlap matrix elempethst are maximum
where the offset due to the magnetic field and the hyperfine coupling vanishes.

Such a behaviour has been discussed before by several authors; e.g. in references [26,
13]. Note, however, an essential difference with respect to the nature of the microscopic
process. It has been generally assumed that the system is scattered from the left-hand state
[ of such a resonant level pair to the right-hand one,

In view of our perturbation theory, it turns out that the most relevant process occurs
between states that belong different pairs; cf. the transition (2) in figure 2. We find
that the phonon-assisted rate of transfer between resonant levels—in our nbtgtieis
insignificant, except for very low temperatures and sngallFor T not too small, the non-
diagonal resonant transitions are more efficient, because of the strong frequency dependence
of the bath spectral density’ ().

Relaxation from the left-hand to the right-hand well involves a change of &ogngy
and magnetization thus requiring ahybrid process. Energy conservation is ensured by
absorption or emission of a phonon, whereas the magnetization is carried away by the
transverse hyperfine fieltl, that is hidden in the off-diagonal entri€sy,,. Accordingly,
the rate is proportional to the square of the elastic deformation potenéiatl to the square
of the relevant2;g. The former appears in the paramatein (2.22), whereas the latter is
hidden in the factow? of the rate; equation (6.5) displays both factors most clearly.

8.3. Transition without phonons

The phonon-driven rate becomes very small in the limit of zero temperature and zero field,
since it involves the phonon density of states at very low frequency. In this range the

nuclear spins may act as a heat bath more efficiently than acoustic waves [24]. There is
experimental evidence for this occurring fér— 0, resulting in a constant rate that does

not depend on phonon coupling [10].

8.4. Coherent motion between the two wells

The time propagata¥ derived in section 2 factorizes in two partg,andW (cf. equations
(2.12)—(2.17)). The former describes the relaxational, or zero-frequency, dynamics of the
spin system; the resulting long-time behaviour of the magnetization is the main issue of this
paper.

Here we briefly address the second pa#t(z), that accounts for the oscillatory, or
coherent, time evolution of the electron spins; it gives rise to damped oscillations in the
experimentally relevant two-time correlation functi@hr — ') = (S.(1)S.(t")),. In a
scattering experiment, the resolvéfit(z) would describe inelastic transitions with resonance
frequenciesA,,, and widthsz,1.

The most interesting case concerns very low temperature and zero magnetic field. These
conditions ensure that there is only a single resonance frequency, i.e., the ground-state
splitting 2ZA = +/Q2 + €2. When calculating the oscillatory contribution to the correlation
function, one finds, moreover, that it is reduced by a residue factor:

Cres(t) = (22/h2A?) cog A1) exp(—t /7). (8.3)

As a consequence, the oscillations disappear as soon as theedieseds the tunnel energy
Q. The latter, however, is smaller by many orders of magnitude than the random hyperfine
field i, thus rendering hopeless the search for those oscillations. But even if one could
detect a signal as weak 83 /h2A2, the average oveér. would result in a broad distribution
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of frequencies, sincéA = ,/Q2 + §2h2 for B = 0. As a further complication, one finds

that phonon damping is strong, resulting in a phase coherencetithat reaches the
millisecond range only avery low T'; it is much shorter than the barrier crossing time
1/r,.

From this discussion we conclude that both nuclear spins and phonons would destroy
the coherent motion of,, due to the small energy overlap of the ground states in the
two wells. In this sense, the twelve spins of Ac are already too large a system to show
guantum coherence.

9. Summary

In this paper we have investigated the relaxation behaviour of mesoscopic molecules such
as Mn,Ac. We have explicitly evaluated the reduced spin propagator, by expanding the
self-energy matrix in terms of the spin—phonon coupling. The dynamics occurs on two very
different timescales that are given by the rate for transitions within one well, and the rate
for transitions from one well to the other. Since the latter one is much smaller, magnetic
relaxation may be reduced to an effective two-state problem. Here we summarize our main
results.

(i) The most relevant phonon-mediated transitions do not occur between almost
degenerate levels, but from one resonant pair to another; compare (2) in figure 2.

(i) The relaxation rate is strongly enhanced at the ‘resonant’ values of the magnetic field
(1.2), withJ =0, 1, 2, .... The width of these resonances is determined by the longitudinal
hyperfine fieldb,.

(iii) The resonances are not symmetric absut but slightly shifted to positives — B;.

This effect arises from the fact that a small excess field lowers the activation energy for
non-diagonal resonances. Compare this with figure 4.

(iv) At temperatures above 2 K, transitions close to the top of the barrier are the most
efficient; as a consequence, the rate shows activated behaviour Wher§?A — g SB is
given by the energy distance from the ground state in the left-hand well to the top of the
barrier.

(v) Below abouw 1 K and for sufficiently large magnetic fielguB > A, the rate is
constant as a function of temperature. For small figldB <« A, it shows Arrhenius
behaviour with the activation energy = (25 — 1) A.

(vi) At very low temperature, the rate is determined by the direct phonon process in the
ground-state doublet. For small fielght B <« A, andT = 0, relaxation isvery slow, with
a rate that is linear irB. At small field and small but finite temperature, the rate varies
linearly with T and is independent aB; cf. equations (6.5) and (6.6). As a consequence,
the rate for direct transitions is significantly smaller than those discussed in previous work;
this rate is reduced by a fact€?/[Q? + (2SguB)?], which may be much smaller than
unity. See the discussion below equations (5.14) and (7.2).

Acknowledgment

Valuable discussions with Jacques Villain are gratefully acknowledged.



Magnetic relaxation of mesoscopic molecules 10099
References

[1] Gunther L and Barbara B (ed) 1993uantum Tunneling of Magnetization (NATO ASI Serie¢rdrecht:
Kluwer)
[2] Barbara B, Sampaio L C, Wegrowe J E, Ratman B A, Marchand A, Paulsen C, Novak M A, Tholence J L,
Uehara M and Fruchart D 199B Appl. Phys73 6703
[3] Stanmp P C E1991Phys. Rev. Letit6 2802
Stanp P C E1992 Nature 359 365
[4] Enz M and Schilling R 1986. Phys. C: Solid State Phy$9 711
[5] Van Hemma J L and $it6 A 1986 Europhys. Lettl 481
Van Hemma J L and $it6 A 1986 PhysicaB 14137
[6] Chudnovsk E M and Gunther L 198®hys. Rev. Lett60 661
[7] Garann D A 1991J. Phys. A: Math. Ger24 L61
[8] Chudnovsky E 1993. Appl. Phys73 6697
[9] Sessoli R, Gatteschi D, Caneschi A and Niowd A 1993 Nature 365 141
Sessoli Ret al 1993J. Am. Chem. Sod.15 1804
[10] Paulsen C and Park J-G 19€uantum Tunneling of Magnetization (NATO ASI Serieed}. Gunther and
B Barbara (Dordrecht: Kluwer) p 187
[11] Sangregorio, C, Ohm T, Paulsen C, Sessoli R and Gatteschi D R®9¢S. Rev. Let{78 4645
[12] Hernandez J M, Zhang X X, Luis F, Bartol@d, Tejada J and Ziolo R 19%urophys. Lett35 301
[13] Hernandez J M, Zhang X X, Luis F, Tejada J, Friedmann J R, S&adh? and Ziolo R 1997Phys. Rev.
B 555858
[14] Barbara B, Wernsdorfer W, Sampaio L C, Park J G, Paulsen C, Novak M Aé RerMailly D, Sessoli R,
Caneschi A, Hasselbach K, Benoit A and Thomas L 1996lagn. Magn. Mater140-1441825
[15] Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1&t6ire 383 145
[16] Barbara B, Thomas L, Lionti F, Sulpice A and Caneschi A 189&print
[17] Politi P, Rettori A, Hartmann-Boutron F and Villain J 199%ys. Rev. Lettr5 537
[18] Garg A and Kim G-H 198%hys. Rev. Leti63 2512
[19] Villain J, Hartmann-Boutron F, Sessoli R and Rettori A 134rophys. Lett27 301
[20] Villain J, Wurger A, Fort A and Rettori A 1993. Physiqud 7 1583
[21] Garanh D A and ChudnovskE M 1997 Phys. RevB 56 11 102
[22] Luis F, Bartolong J and Ferande J F 1998Phys. RevB 57 505
[23] Fort A, Rettori A, Villain J, Gatteschi D and Sessoli R 199Bys. Rev. Leti80 612
[24] Burin A L, Prokof'ev N V and Starp P C E1996 Phys. Rev. Letr6 C3040
[25] Prokof'ev N V and Starp P C E 1995 Quantum Tunneling of Magnetization (NATO ASI| Seriesd)L
Gunther and B Barbara (Dordrecht: Kluwer)
[26] Hartmann-Boutron F, Politi P and Villain J 1996t. J. Mod. Phys10 2577
[27] Nakajima S 1958rog. Theor. Phys20 948
[28] Zwanzig R 1960). Chem. Phys33 1338
[29] Haake F 1973Statistical Treatment of Open Systems by Generalized Master Equations (Springer Tracts in
Modern Physics 66Berlin: Springer)
[30] Wirger A 1989Z. Phys.B 76 65
[31] Wirger A 1998Phys. RevB 57 347
[32] Abragam A and Bleaney B 197Blectron Paramagnetic Resonance of Transition I§@gford: Clarendon)



