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Received 18 May 1998, in final form 11 August 1998

Abstract. The relaxation dynamics of nanoscale molecules such as Mn12Ac arises from spin–
lattice coupling and interaction with nuclear spins. Using a resolvent method in terms of the
energy eigenstates and the first Born approximation with respect to phonon scattering, and
averaging over the hyperfine field, we obtain a controlled approximation for the non-equilibrium
magnetic relaxation behaviour and, in particular, for the corresponding rate. The rate is finite at
T = 0, then increases linearly withT , and shows Arrhenius behaviour at higher temperature; for
zero magnetic fieldB there are two different activation energies. The resonances as a function
of B are shown to be slightly asymmetric aboutB = 0. Taking account of a quartic crystal field
gives rise to a temperature-dependent shift of the resonant values ofB. We find that, contrary
to previous results, the rate is independent of the magnetic field at low but finite temperatures;
for T → 0 it is linear inB. Finally we compare our findings with various experimental data.

1. Introduction

During the last decade, nanoscale molecules have attracted much attention because of their
particular long-time magnetic relaxation behaviour. These systems are interesting from a
fundamental point of view, as possible realizations for macroscopic quantum coherence
(cf. Leggett’s contribution to reference [1]), and since they permit one to study dissipation
mechanisms in magnets of mesoscopic size that might be relevant for the dynamics of
domain walls in bulk materials [2, 3].

These molecules comprise a few tens of atoms whose electronic spins couple to a total
spinS; for Mn12Ac one hasS = 10. A uniaxial crystal field gives rise to an energy ladder
with degenerate ground statesSz = ±S, and residual couplings result in a tiny ground-state
splitting �. Calculating� is not a simple matter; it has been tackled in a semiclassical
approximation, i.e.S → ∞ with h̄S constant, and by path integral methods for quantum
spins [4–7]; for recent reviews see references [8, 1].

Various experiments have revealed a rich dependence of the relaxation behaviour on
temperature and magnetic field. The rate shows activated behaviour above a few K [9–13],
whereas it tends towards a constant at lowerT [10, 11]; the characteristic timescale may
reach several weeks. As a function of the magnetic field, the rate shows maxima at certain
valuesBJ [12–16]; see (1.2) below.

The observed relaxation behaviour indicates the relevance of other degrees of freedom.
Coupling to elastic waves, or phonons, is needed to ensure energy conservation both for
transitions between the ground states [17, 18] and from excited levels [19–23]. The hyperfine
interaction couples electronic and nuclear spins; it gives rise to a random magnetic field
and influences the relaxation dynamics [24–26].
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The present theory applies quite generally to an easy-axis magnet with spinS. More
specifically, we consider a Mn12Ac molecule that consists of eight Mn3+ ions with spin 2 and
four Mn4+ ions with spin 3

2 [1, 26]. The magnetic interaction leads to a total spinS = 10,
and the tetragonal molecular symmetry defines an ‘easy axis’ or quantization directionSz.
The resulting 21 states are split by a quadratic spin anisotropy−AS2

z ; an external magnetic
field along thez-axis adds a Zeeman term−gµBSz, thus giving rise to the levels

EM = −AM2− gµBM (1.1)

where the magnetic quantum numberM denotes the eigenvalues ofSz. The anisotropy
parameter takes a value ofA/kB ≈ 0.6 K.

For B = 0, the states|M〉 and |−M〉 are degenerate. Similar pairs of resonant levels
|−M〉 and |M − J 〉 occur at

BJ = J A
gµ

(1.2)

where we haveE−M = EM−J .
Whereas the energy levels of the molecule are well described in terms of the static

crystal field, the dynamics, i.e., the magnetic relaxation, requires one to take into account
bath variables. Coupling to nuclear spins, i.e. the hyperfine interaction, has been considered
in detail in references [25, 26]. Since there is no simple expression for the microscopic
coupling potential in terms of the collective electron spinS, we subsume the hyperfine
interaction in an additional magnetic field energy

Ehf = −hxSx − hzSz (1.3)

where the field componentshx andhz are random quantities, with distribution lawsPi(hi).
Thus the spin Hamiltonian comprises anisotropy and Zeeman terms (1.1), and the hyper-

fine interaction (1.3),

HS = −AS2
z − gµBSz − h · S. (1.4)

The transverse fieldhx is of little consequence for the energy levels, but it mixes the
angular momentum states and is therefore essential for the dynamics. In accordance with
the estimation given in [26], we will assume the fieldshi to be small as compared toA.

At first sight the longitudinal hyperfine fieldhz would seem to be of little relevance; it
merely causes a slight energy shift that is smaller than the separation(2M+1)A of adjacent
levelsM andM + 1. Since, depending on the nuclear spin state, the hyperfine coupling
changes from one spin angular momentum(M) to another(M ′), in (1.4) we assume that
it is linear in the differenceM − M ′. Since the actual nuclear spin state consists of a
superposition of different one-atom states, we may treat thehz as a random variable.

We will see that the nuclear spins play the role of a magnetization reservoir, since they
change, through the transverse couplingSxhx , the magnetic state of the molecule. They
do not, however, permit energy relaxation, since their level spacings are much smaller than
those of the electron spin, i.e., there is no resonant spin-flip interaction between nuclear and
electron spins.

Relaxation requires contact to a heat bath; this is provided by coupling to the elastic
waves of the host crystal,

V = v(S)
∑
s

γsεs (1.5)

where s labels the three acoustic phonon branches with coupling energyγs and the cor-
responding strain field

εs =
∑
q

(
h̄/2NMωqs

)1/2
q
(
ibqs − ib†qs

)
. (1.6)
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The factorq arises for quantized acoustic modes, [b
†
qs , bq′s ′ ] = δqq′δss ′ , with wavelengths

larger than the size of the molecule. Because of time-reversal symmetry,v(S) must be of
even order in the spin operators. According to the discussion in [26], the most important
term reads

v(S) = SxSz + SzSx. (1.7)

In this paper we will use two types of spin state, namely the eigenstates ofSz and those
of HS [17]. The former are labelled by capital letters,|M〉, with −S 6 M 6 S; they fulfil
Sz|M〉 = M|M〉. The energy eigenstates|n〉 are defined byHS|m〉 = Em|m〉. We will use
a notation such that there is a close correspondence between the states|M〉 and |m〉 with
m = M.

Very recently, the relaxation behaviour arising from phonon coupling has been studied
perturbatively in the angular momentum basis [21–23], with emphasis on the transition
between quantum and thermally activated regimes. Luiset al [22] considered both hyperfine
(or dipolar) interactions (1.7) and a transverse crystal field, and they investigated the effect
of the resonances atBJ on the relaxation rate and the hysteresis behaviour.

Contrary to that of references [21, 23], our approach is based on the energy eigenstates
of the spin system. One aspect of this choice will be discussed below equation (8.2). We
study in detail the relevant diagrams of the perturbation theory, and we present novel results
concerning the direct process that is predominant at very lowT , in particular the magnetic
field dependence of the relaxation rate.

We close this introductory section with an outline of the paper. Sections 2 and 3
provide the formal apparatus for calculating the time evolution of the electron spin system;
after setting up a perturbation theory in terms of the spin–phonon coupling, we evaluate
the rate matrix and the resulting stationary state, and consider the time dependence of the
magnetization.

In the remaining sections, we apply this theory to the Mn12Ac molecule, and discuss
the dynamics of the magnetization. Sections 4 and 5 contain an approximate evaluation of
the energy eigenstates and the corresponding transition rates. In section 6 we perform the
averaging over the longitudinal hyperfine field and derive the rates explicitly; the temperature
and field dependencies of the rate are addressed in section 7 and compared with experimental
findings. In sections 8 and 9 we discuss and summarize our results.

2. Time evolution

In terms of the statistical operator, the time evolution of the system is determined by

ρ̂(t) = e−iHt/h̄ρ̂eiHt/h̄ ≡ e−iLt ρ̂. (2.1)

In the second equality, we have introduced the Liouville operatorL whose action is given
by von Neumann’s equation ¯hLρ̂ ≡ [H, ρ̂]. Here, the Hamiltonian

H = H0+ V = HS+HB + V
comprises the spin part (1.4), the coupling term (1.5), and the energy of the uncoupled
phonon bath

HB =
∑
qs

h̄ωqsb
†
qsbqs .



10078 A Würger

2.1. Perturbation theory

Our evaluation of the spin dynamics is based on standard weak-coupling theory. We assume
that the statistical operator factorizes at the initial time, and we treat the spin–phonon
coupling perturbatively. The factorization property permits us to define the reduced time
evolution operator

U(t) = 〈eiLt 〉 (2.2)

where the angular brackets〈· · ·〉 = trB(· · · ρB) denote the partial trace over the bath
degrees of freedom. The average over spin variables with weightρ will be denoted by
〈· · ·〉ρ = tr(· · · ρ).

After taking the Laplace transform of (2.2), the propagator can be written in resolvent
form:

U(z) = −[z+3+6(z)]−1 (2.3)

where3 describes the time evolution in the absence of phonon coupling. The self-energy
6 can be obtained by applying a projection operator technique [27–29], or by performing
an appropriate cumulant expansion ofU(t) in terms ofLV . Truncating the perturbation
series at second order, we find

6(t) = 〈LV e−iL0tLV 〉. (2.4)

The ‘superoperators’U , 3, 6, act on the spin degrees of freedom only. From the 21
spin states|M〉, one may construct 212 linearly independent spin operatorsSα, SαSβ , etc.
A more convenient description, however, is provided by the standard basis operators

Xnm ≡ |n〉〈m|. (2.5)

Expanding the spin state in terms ofXnm, we find

ρ =
∑
nm

ρnmXnm (2.6)

with ρnm = ρ∗mn, positiveρnn, and tr(ρ) = 1.
Since U , 3, and 6 are linear operators on the space spanned by{Xnm}, they are

represented by tetrads with 212× 212 = 214 entries:

Unmpq(t) = tr(X†nmU(t)Xpq) (2.7)

etc. The matrix representation is significantly simplified by the fact that the frequency tetrad
3nmn′m′ = 1nmδnn′δmm′ is diagonal in the basisXnm. Here, we have defined the resonance
frequency

1nm = (En − Em)/h̄ (2.8)

for transition between levelsn andm. Because of the level repulsion due to the transverse
field, 1nm cannot be zero, but always takes a finite value.

In order to evaluate the self-energy, we use ¯hLV ∗ = [V, ∗] in (2.4) and thus obtain the
well-known double commutator

6nmpq(t) = 1

h̄2 tr
{
X†nm

[
V, e−iH0t/h̄

[
V,XpqρB

]
eiH0t/h̄

]}
(2.9)

where tr{· · ·} denotes the trace over both spin and bath variables. Note that the weight is
given by the bath equilibrium densityρB only.

Equations (2.4)–(2.9) summarize the perturbation theory for the dynamics of a few
‘system’ degrees of freedom coupled to a phonon heat bath. For a detailed discussion, the
reader is referred to Haake’s book, reference [29]; results similar to (2.9) have been derived
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for the dissipative dynamics of rotational tunnelling [30], the spin–phonon model [31], and
various other systems.

Now we turn to the self-energy (2.9). Evaluating the double commutator and inserting
the phonon coupling potentialV = ∑

nm VnmXnm gives rise to a variety of terms. Yet
it turns out that the random phases of theVnm impose severe selection rules. The spin
operators in (1.7) involve the spin–orbit coupling on each Mn ion. Accordingly, the phase
of the matrix elementVnm = 〈n|V |m〉 arises from the superposition of phases for each ion
and each phonon mode.

HenceVnm may be treated as a complex number with a random phase, resulting in the
relation

〈VnmVpq〉 = 〈|Vnm|2〉δnqδmp (2.10)

which, in turn, restricts the number of finite entries of (2.9) according to

6nmpq = 6nmnmδnpδmq +6nnppδnmδpq (2.11)

and greatly simplifies the subsequent analysis.
Due to the selection rules on3nmpq and6nmpq , the propagator matrixUnmpq is block-

diagonal. Time evolution of the off-diagonal operatorsXnm, with n 6= m, completely
factorizes, i.e., there are 2S × (2S + 1) one-dimensional blocksWnmnm whose self-energy
involves the first term on the r.h.s. of (2.11). The second term mixes all projections
Xnn = |n〉〈n| and results in a larger block

Vnm ≡ Unnmm (2.12)

of dimension 2S + 1. Taking this together with the 2S(2S + 1) one-dimensional blocks
Wnmnm, we obtain a matrix representation for the propagator:

U = V ⊗W W =
⊗
n6=m
Wnmnm (2.13)

whose dimension(2S + 1)2 is in accord with the remark above (2.5).
The frequency dependence of the self-energy is determined by the coupled density of

phonon states. Since the latter function varies smoothly with frequency, we may resort
to a Markov approximation, and replace the matrix elements6(z) by their values at the
corresponding frequencies ofU(z).

We start with the oscillatory part of the propagator,W, which, in terms of the density
matrix (2.6), describes the time evolution of the off-diagonal operatorsXnm with n 6= m.
Phonon coupling leads to a loss of phase coherence, whose rate is given by

1/τnm = =6nmnm(−1nm) (2.14)

The real parts<6nmnm are negligibly small. Thus we obtain

Wnmnm(z) = −[z+1nm + i/τnm]−1

and upon inverse Laplace transformation

Wnmnm(t) = ei1nmte−t/τnm . (2.15)

Note thatW vanishes in the long-time limit, which corresponds to the vanishing phase
memory fort � τnm.

The diagonal operatorsXnn give rise to the zero-frequency poles with1nn = 0, i.e., the
matrix3 vanishes in the subspace spanned byXnn. Accordingly we evaluate the self-energy
at zero frequency,

Rnm = =6nnmm(z = 0). (2.16)
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Since6nnmm(t) is real and an even function of time,6nnmm(z = 0) is purely imaginary.
Thus the diagonal part of the propagator readsV(z) = −[z + iR]−1, where bothV(z) and
R ≡ (Rnm) are matrices of dimension 2S + 1.

Taking the inverse Laplace transformation, we obtain the formal result

V(t) = e−Rt (2.17)

which, again, is to be read as a matrix equation, the argument of the exponential being the
matrix R = (Rnm). Note that the poles ofV(z) are purely imaginary, i.e. (2.17) does not
show any oscillations. In physical terms this means that the dynamics is purely relaxational.

2.2. The rate matrix

We complete evaluation of the propagator by calculating the decoherence rates 1/τnm and the
relaxation ratesRnm as defined in (2.14) and (2.16), respectively. The double commutator in
(2.9) gives rise to two types of contribution. First, there are terms which read schematically
asXVVX andXXVV and, second, there are terms where the factorsV are separated by
the standard basis operators,XVXV . It turns out that the decoherence rates 1/τnm and the
diagonal entries of the rate matrix,Rnn, are of the first type, and the off-diagonal relaxation
rates,Rnm with n 6= m, are of the second type. The latter carry a minus sign.

We start with the rate matrixRnm. After inserting (1.5) in (2.9), using the spectral
representation

eiHSt =
∑
n

Xnne
iEnt

and taking advantage of (2.10), we obtain

6nnmm(t) =
∑
k

|vnk|2e−i1kntϕ(t)δnm − |vnm|2e−i1nmtϕ(t)+ CC (2.18)

where the spin part of the coupling potentialV reads in terms of energy eigenstates as

vnm = 〈n|v(S)|m〉 (2.19)

and the bath part gives rise to the correlation function

ϕ(t) =
∑
s

γ 2
s 〈εs(t)εs(0)〉. (2.20)

Its complex conjugate (CC) readsϕ(t)∗ = ϕ(−t).
Upon inserting the definition of the elastic strain (1.6), assuming isotropic acoustic

waves with the dispersion relationωqs = vsq, and taking the Fourier transform, we obtain
the bath spectral density

ϕ′′(ω) = παω3[1+ n(ω)]. (2.21)

Heren(ω) = [eβh̄ω − 1]−1 denotes the Bose function and

α = 1

2π2

∑
s

γ 2
s

%v5
s h̄

(2.22)

a coupling constant with dimension (frequency)−2. % is the mass density. With the shorthand
notation

0nm = |vnm|2ϕ′′(1nm) = π |vnm|2α13
mnn(1mn) (2.23)

one easily calculates the rate matrixRnm. Its diagonal elements

Rnn =
∑
k

0nk (2.24)
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may be considered as the widths of the quantum levelsn, whereas the off-diagonal ones

Rnm = −0mn (n 6= m) (2.25)

describe transitions between statesn andm.
Now we turn to the decoherence rates 1/τnm. Proceeding as above and noting that

1nm +1mk = 1nk, we find

1

τnm
= 1

2

∑
k

(
0mk + 0nk

) = 1

2

(
Rmm + Rnn

)
. (2.26)

Equations (2.24)–(2.26) provide an explicit expression for the propagator (2.13), which we
are going to apply to the relaxation of the spin variables.

It is instructive to consider the stationary solution of the propagatorU(t). Since the
off-diagonal partW decays exponentially, we have to look for a set of occupation numbers
pn = ρnn = 〈Xnn〉ρ fulfilling ṗn = 0. The equation of motion forρ(t) = V(t)ρ(0) leads to
the well-known Master equation

ṗn =
∑
m

(
0mnpm − 0nmpn

)
. (2.27)

The stationary solution, or equilibrium distribution, is given byṗ(eq)
n = 0, which leads to

the detailed-balance conditionp(eq)
n /p

(eq)
m = 0nm/0mn = exp[−β(En − Em)]. Thus any

initial stateρ will relax towards the equilibrium distribution

ρ(eq) =
∑
n

p(eq)
n Xnn. (2.28)

In principle, the relaxation behaviour could determined by diagonalizing the time
evolution operatorV or, equivalently, the rate matrixR, and expanding the initial state
ρ =∑n pnXnn, or p, in terms of the eigenvectors. In practice, such a procedure is suitable
for a few system states, say not more than four. (Compare this with the treatment of the
dissipative two-state system in reference [31].) Yet it is of little use for the present problem
concerning 2S + 1 spin states with, e.g.,S = 10.

3. Magnetic relaxation

The previous sections provide the formal apparatus for the dissipative dynamics of the
magnetization of a Mn12O12 molecule. Before discussing relaxation phenomena, it would
seem useful to consider the time evolution of the magnetization for a given initial state.

The magnetization along thez-direction is given by the expectation value

M(t) = 〈Sz(t)〉ρ. (3.1)

The representation ofSz =
∑

nm MnmXnm in terms of energy eigenbasis involves the
coefficientsMnm = 〈n|Sz|m〉. When inserting the initial state (2.6) andSz in (3.1), we
find two different contributions:

M(t) =
∑
n6=m

MnmW (nm)(t)ρnm +
∑
n

MnnVnm(t)ρmm (3.2)

which evolve in time according toW andV, respectively.
Since bothρ andM are Hermitian, the first part gives rise to terms oscillating with

frequencies1nm and whose phase coherence is lost after a timeτnm. In general there
are many frequencies superposed; yet with an appropriate choice for the initial state, it
is in principle possible to retain a single frequency. The oscillating part vanishes for a
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state which is diagonal in the energy representation,ρ = ∑
n ρnnXnn. These oscillations

of the magnetization could be probed by means of an appropriate time-dependent external
field. It turns out, however, that there is little hope for observing such coherent motion;
cf. section 8.4.

The second term in (3.2) is more relevant for our purpose. It describes how the
magnetization tends towards its equilibrium value

M(eq) =
∑
n

Mnnρ
(eq)
nn . (3.3)

In general, this relaxation process is not uniform but occurs with rates which are given by
the entries of the matrix0.

There are two basically different timescales. The shorter one is given by the relaxation
within one well, involving transitions between statesn andm with similar magnetization
Mnn ≈ Mmm. The corresponding rates are of the order ofRnn, i.e., they involve the largest
0nm; from (2.26) it is clear that this fast intrawell relaxation occurs on the timescale 1/τnm.
The second characteristic time involves relaxation from one well to the other, i.e., it requires
transitions between states with very different magnetization. We will see below that the
corresponding transition rates0nm are much smaller thanRnn.

As discussed below (3.3), the relaxation behaviour in the(2S + 1)-dimensional spin
space cannot be solved analytically. Yet the existence of two separate timescales permits
us to reduce the number of variables. In view of the experimental situation, we are not
interested in the occupation of each leveln, but rather in the relative probability of finding
the molecule in the left-hand or in the right-hand well.

The physical meaning of the double-well picture consists in positive and negative
magnetization. A sound criterion for separating the 2S + 1 states in two sets is provided
by considering the magnetizationMnn = 〈n|Sz|n〉 and by relating the probability of finding
the system in the left-hand well to a negative value ofMnn:

Q =
∑
l

pl for Mll < 0 (3.4)

and similarly relating the occupancy of the right-hand well, 1− Q, to a positive
magnetization,Mrr > 0. This definition is meaningful for finite magnetic field only, since
Mll = 0 for all l in a strictly symmetric potential. Even forB = 0, however, the symmetry
is broken by the random hyperfine fieldhz; as a consequence, the case whereMll = 0 is
marginal, andQ takes in general a finite value.

When inserting the Master equation (2.27) in the time derivative ofQ, we obtain

Q̇ = 0↓(1−Q)− 0↑Q (3.5)

where we have defined the rates

0↓ =
(∑

lr

pl0lr

)/∑
l

pl = 1

Q

∑
lr

pl0lr (3.6)

and0↑ with l and r exchanged, andQ replaced by 1− Q. Note that, even forQ = 1,
there is a small probability of finding the system in the right-hand well, since the energy
eigenstates|n〉 are never completely localized in one well.

These rates do not depend on the occupancyQ. Because0ll′ � 0↓, the ratiopl/pl′
is constant on the timescale 1/0↓. In physical terms this means that thermal equilibrium
between the states within the left-hand well is satisfied almost instantaneously, whereas
the equilibration of the two wells takes a much longer time of about 1/0↓. The rates0↑
and0↓ are weighted averages of the0nm. As a consequence, they do not satisfy a simple
detailed-balance condition, contrary to the0nm.
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In the two-well picture, magnetic relaxation is determined by the initial valueM(in) =
〈Sz(t = 0)〉ρ , the equilibrium value (3.3), and the rate0 = 0↓ + 0↑, according to

M(t) = M(eq) + e−0t
(
M(in) −M(eq)

)
. (3.7)

In the most common experimental situation, the system is initially localized in the left-
hand well, i.e.Q = 1. After reversing the sign of the magnetic field, however, thermal
equilibrium favours the right-hand well. In (3.7) this means thatM(in) < 0, M(eq) > 0, and
0 ≈ 0↓ � 0↑.

4. Energy eigenstates

The formal approach of the preceding sections strongly relied on the energy eigenstates|n〉.
Since the dominant part of the energy, equation (1.1), is diagonal in terms ofSz, the angular
momentum states form a most convenient basis,

|n〉 =
∑
N

c
(n)
N |N〉 (4.1)

with the defining equationSz|N〉 = N |N〉. In principle, the Hamiltonian can be written
as anS-dimensional matrix that yields, upon diagonalization, the energiesEn and the
corresponding eigenstates|n〉 in terms of the expansion coefficientsc(n)N . The latter have
been discussed in detail in reference [26]. Here, we will adopt a simple approximation
which retains, however, all features relevant for calculating the rate0↓.

4.1. Pairs of resonant states

The energy scale of the diagonal part of the Hamiltonian,A, is larger than the off-diagonal
one, hx . As a consequence, the energy eigenstates differ very little from the angular
momentum states, i.e., in (4.1) there is one coefficient that is close to unity,c

(m)
M ≈ 1.

The remaining ones are at most of the order ofhx/A, which is small, |c(m)N | � 1 for
N 6= M. Hence the eigenstates|m〉 are well approximated by the corresponding|M〉, and
the levels fulfilEm = EM +Mhz, up to corrections of the orderh2

x/A.

L

L'

L''
R''

R'

R

l''
r''

l'
r'

l
r

Figure 1. Angular momentum and energy eigenstates.

For certain values of the magnetic field, however, the states in the left-hand and right-
hand wells, i.e., with negative and positive magnetization, form pairs of nearby levels, as
shown in the left-hand part of figure 1. Then the expansion in (4.1) comprises two significant
coefficients,L andR, or L′ andR′, etc. The remaining terms are negligible. Hence we
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may truncate the Hilbert space to a resonant pair of states, with an effective Hamiltonian
matrix

H =
(
EL + Lhz 1

2�LR
1
2�LR ER + Rhz

)
(4.2)

whereEN = −AN2 − gµNB. The off-diagonal terms are calculated perturbatively in
powers ofhx/A; we quote the result

�NM = 2A

(N −M − 1)!2

√
(S +N)!(S −M)!
(S −N)!(S +M)!

(
hx

2A

)N−M
(4.3)

for N > M [7, 21].
After subtracting the average energy and defining the asymmetry energy

εLR = EL − ER + (L− R)hz (4.4)

one easily calculates the eigenvalues of (4.2)

E± = 1

2
[EL + ER + (L+ R)hz] ± 1

2

√
�2
LR + ε2

LR (4.5)

and the corresponding eigenvectors

|+〉 = u|L〉 +
√

1− u2|R〉 (4.6)

|−〉 =
√

1− u2|L〉 − u|R〉 (4.7)

where we have dropped the labelsLR and defined the quantity

u2 = 1

2

(
1− ε√

�2+ ε2

)
. (4.8)

Corrections to the approximate energiesE± and eigenstates|±〉 are of the order of(hx/A).
The coefficientu has been chosen such that, for positiveεLR, the state of the upper

level |+〉 has a larger amplitude in the right-hand well, and the lower in the left-hand well;
we will use the suggestive notation

|l〉 = |∓〉 |r〉 = |±〉 for εLR >
< 0. (4.9)

(For the marginal case of zero bias,εLR = 0, the two states have equal amplitudes in the
two wells, |±〉 = 2−1/2(|L〉 ± |R〉).) Equation (4.9) ensures that the angular momentum
states|L〉 (or |R〉) provide the largest amplitude to the energy eigenstates|l〉 (or |r〉).

The right-hand part of figure 1 illustrates the hybridization of resonant levels. The states
l, r, l′, r ′, . . . are no longer localized in one well or the other; yet we have indicated the
smaller amplitude by a broken line on the left- or right-hand side. According to (4.9), we
have plotted the levels for positiveεLR. A negative value would result in an exchange of
the labelsl andr, etc, and of solid and broken lines.

The superposition of resonant states is essential for two physical effects. First, it lies
at the origin of level repulsion; when switching the magnetic field through a resonance, no
real degeneracy occurs, since the off-diagonal energies�NM provide a minimum splitting.
Second, the amplitudesu and

√
1− u2 describe the mixing of states from different wells,

and thus give rise to relaxation from one well to the other.

5. The transition rates Γnm

According to (3.6) the magnetic relaxation behaviour is determined by the off-diagonal
entries of the rate matrix,0nm. In view of (2.23), we need to calculate the energy difference
1nm and the coupling matrix elementvnm as defined in (2.19). In the following, we discuss
the rates for transitions between energy eigenstates in the two wells.
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l'
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Figure 2. Phonon-assisted transitions between energy eigenstates. For details see the main text.

5.1. Intrawell relaxation (1)

First we consider transitions between states|l〉 and |l′〉 that have a larger amplitude in the
left-hand well; cf. (1) in figure 2. These rates donot contribute to the relaxation into the
right-hand well, but govern how thermal equilibrium is reached within the left-hand well.

According to the above discussion, we have

|l〉 =
√

1− u2|L〉 + u|R〉
and a similar expression for|l′〉, with amplitudesu and u′ given by (4.8) for the pairs
L,R andL + 1, R − 1. With the matrix element of (1.7) connecting angular momentum
eigenstates,

〈N + 1|v|N〉 = (N + 1
2)

√
S(S + 1)−N(N + 1) ≡ cN (5.1)

one easily finds

vll′ = cL
√
(1− u2)(1− u′2)+ cRuu′. (5.2)

For positive asymmetry energyε, one quickly reaches the rangeu, u′ � 1 where the second
term is of little significance. Except for marginal cases, the approximate expression

vll′ ≈ (L+ 1
2)

√
S(S + 1)− L(L+ 1). (5.3)

correctly describes the rate. Since the hybridization energy is much smaller than the diagonal
terms, the energy difference1ll′ is well approximated by

h̄1l′l ≈ −A(2L′ + 1)− gµB. (5.4)

As is clear from (2.24) and (2.26), the intrawell relaxation rates determine the level width
Rnn and the characteristic time for the loss of phase memory of the tunnel oscillations,τnm.
With the parameters discussed below, one finds typical values of 109–1011 s−1.

5.2. Non-diagonal resonances (2)

Now we turn to transitions from states mainly localized in the left-hand well,l, l′, l′′, . . .,
to those in the right-hand well,r, r ′, r ′′, . . .; cf. (2) in figure 2. A particularly interesting
situation arises for a magnetic field close to the resonant values defined in (1.2).
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Naively, one would expect transitions through resonant level pairsl ↔ r, l′ ↔ r ′, etc,
to be the most significant. It turns out, however, that this is not the case; the magnetic
relaxation behaviour is governed by transitions likel ↔ r ′ and l′ ↔ r, i.e. between states
that belong to adjacent resonant pairs (cf. figure 1).

We first consider the rate0lr ′ , which depends on the energy difference1lr ′ and the
matrix element of the operator (1.7),vlr ′ = 〈l|v(S)|r ′〉. The former differs little from the
energy difference of the corresponding angular momentum eigenstates

1lr ′ ≈ (EL − ER′ + Lhz − R′hz)/h̄ (5.5)

whereas the matrix elementvlr ′ reads with (4.8) and (5.1) as

vlr ′ = cLu
√

1− u′2− cR−1

√
1− u2u′. (5.6)

With 1r ′l = −1lr ′ we find the transition rate

0lr ′ = πv2
lr ′α1

3
r ′ln(1r ′l). (5.7)

At resonance,ε = 0= ε′, we havevlr ′ = 1
2(cL − cR−1). In real systems, however, this

case is marginal, because of the random hyperfine interactionhz. (See section 6 below.)
As a consequence, the matrix elementvlr ′ is in general much smaller than unity, contrary
to the case for intrawell transitions, wherevll′ is of the order ofS3/2, for not too small|l|.

The rate (5.7) is smaller by an overlap factoru2(1− u′2) than that for intrawell relax-
ation. This is why the interwell relaxation is so much slower than the motion within one
well.

5.3. Direct resonant transitions (3)

Finally we consider phonon-assisted transitions within a resonant level pair,l ↔ r, labelled
(3) in figure 2. Although formally identical to (5.7), the corresponding rate is much smaller,
since both the matrix elementvlr and the energy difference

h̄1lr =
√
�2
LR + ε2

LR

are significantly reduced.
At very low temperatures and small magnetic field, however, the non-diagonal

resonances become ineffective, because of the exponentially small factorsn(1r ′l). Then the
resonant rate between the ground states in the two wells,l = −10 andr = 10, dominates
the magnetic relaxation behaviour. (We recall thatl, r denote energy eigenstates, wherel
has a larger amplitude in the left-hand well, andr in the right-hand one.)

Therefore we evaluate (4.2)–(4.9) for the special case whereR = −S, L = S, and small
but finite magnetic field,gµB � A. With � = �−S,S and ε ≡ E−S − ES − 2Shz, where
E−S − ES = gµ2SB, the two-state Hamiltonian reads as

H = 1

2

(
ε �

� −ε
)
. (5.8)

With the matrix elementv = 〈l|v(S)|r〉 and the energy splitting of the ground states
h̄1 = √�2+ ε2, we obtain the rate for direct transitions

0dir = πv2α13[n(1)+ 1]. (5.9)

Now we are going to evaluate the phonon scattering matrix element connecting the
ground-state doublet,v. Unlike in the cases considered above, it is not sufficient to retain
the amplitudes of two angular momentum states,N = ±10; in order to obtain a finitev,
we have to take into account the amplitudes of the adjacent statesN = ±9 as well.
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The amplitudes of the lowest angular momentum states|S〉 and | − S〉 are determined
by the two-state Hamiltonian, and readu and

√
1− u2. Since the transverse fieldSxhx is

smaller than the energy difference of adjacent angular momentum states, the coefficients
for N = ±9 can be calculated perturbatively in terms ofSxhx or, more precisely, in terms
of the small parameterx = 〈N = 10|Sxhx |N = 9〉/(E9 − E10). Starting from the largest
amplitudesu and

√
1− u2, we find

c
(l)

−10 =
√

1− u2 = c(r)10 c
(l)

10 = u = −c(r)−10

c
(l)

−9 = x
√

1− u2 = c(r)9 c
(l)

9 = xu = −c(r)−9.
(5.10)

The remaining amplitudes with−8 6 N 6 8 are of the order ofx2 and hence may be
neglected. The coefficients (5.10) are normalized up to corrections of the orderx2.

Now it straightforward to calculate the matrix elementv = 〈l|v(S)|r〉. Inserting the
small parameter

x =
√
S/2bx

(2S − 1)A
(5.11)

the matrix element〈N = 10|{Sz, Sx}|N = 9〉 = (S − 1
2)
√

2S, and the square of the overlap

u2(1− u2) = 1

4

�2

�2+ ε2
(5.12)

we obtain an explicit result:

v2 = (S − 1/2)22Sx2u2(1− u2). (5.13)

Inserting this in (5.9) and dropping terms of the order 1/S, we find the rate for direct
transitions between the states of the ground-state doublet:

0dir = π(Sbx/A)2α(�/h̄)21[n(1)+ 1]. (5.14)

Anticipating a more detailed discussion to be given below, we remark that0dir is independent
of the magnetic field and proportional toT for 2Sgµ|B| < kBT , whereas it varieslinearly
with B and is constant with respect toT at very low temperatureskBT < 2Sgµ|B|.

We briefly discuss two discrepancies between the rate (5.14) and previous results
[17, 24, 26], concerning the dependence on the magnetic fieldB.

(i) In these studies, a quadratic law,0 ∝ B2, is derived for the most relevant case,
that where 2SgµB < kBT , and a cubic law,0 ∝ B3, for kBT < 2SgµB. This result is
obtained from an expression that, for finite magnetic field, is identical to our equation (5.9),
with h̄1 ≈ 2SgµB � �. As is obvious from (5.12), however, the overlap matrix element
connecting the left-hand and right-hand states provides, forε ≡ 2SgµB � �, a factor
�2/ε2; this additional factor reduces the power ofB by 2, and leads to a rate independent
of B for ε < kBT , and a linear variation in the opposite case.

(ii) The rate of reference [17] vanishes in the limit of zero field, whereas our expression
tends towards

0dir = π(Sbx/A)2α(�/h̄)3[n(�/h̄)+ 1] (B = 0). (5.15)

In [17], this constant term is missed since the perturbation expansion is carried out in terms
of angular momentum eigenstates|N〉. Hence the energy splitting of resonant states does
not account for level repulsion due to the finite off-diagonal energy�. Accordingly, at
zero magnetic field the phonon spectral density is evaluated at zero frequency, resulting in
a vanishing rate, whereas our rate remains finite atB = 0.
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In summary, our results differ from that obtained in [17, 24, 26], since in these studies the
magnetic field dependence of the factorv2 has been neglected. Moreover, our perturbation
expansion is based on energy eigenstates, rather than the angular momentum basis used
in [17].

6. The average over the hyperfine field

The fieldshx andhz introduced in (1.3) account for the hyperfine interaction of the nuclear
spin, with I = 5

2 for 55Mn, with the electronic spin,σ = 2 for Mn3+ and σ = 3
2 for

Mn4+. Whereas for a single Mn atom, this coupling is simply given byAhfσ · I, a
more complicated situation is encountered in the case of the Mn12O12 molecule. The
strong magnetic interaction favours collective spin states withS = 10 that are only weakly
perturbed by the nuclear spins.

Hartmann-Boutronet al [26] have studied in detail the level splitting and degeneracies
resulting from the hyperfine interaction. They find that coupling to nuclear spins gives rise
to a few hundred levels spread over an energy range of about 1 K; the hyperfine field takes
values of the order 0.1 T.

Here, we neglect the microscopic structure of this coupling. Instead, we use the simple
form (1.3) with random fieldshx andhz. The hyperfine interaction has two physical effects.
Its off-diagonal parthxSx mixes the angular momentum states, whereas the diagonal term
hzSz acts as an additional magnetic field along the magnetization axis.

The values of the fieldshx andhz depend on the nuclear spin state of the 12 Mn atoms
which varies from one molecule to another and as a function of time. In order to account
for the resulting randomness, we introduce a distribution law for the hyperfine fields. The
actual discrete spectrum is well approximated by a Gaussian [26]:

Pi(hi) = 1√
2πbi

exp

(
− h

2
i

2b2
i

)
(6.1)

wherebi/kB is of the order of 0.1 K.
The average overhx concerns the off-diagonal energies�NM , as defined in (4.3). We

will assume that the�NM involve already the properly averaged fields, i.e., we replacehx
by bx .

We are rather interested in the dependence onhz of the phonon scattering matrix
elementsvlr . The fieldhz adds a random component to the static magnetic fieldB. Acc-
ording to (4.4), this results in a distribution for the asymmetry energyεLR between the
resonant states|L〉 and |R〉. On the other hand, this random field is irrelevant for non-
resonant levels, sincebz is significantly smaller than a typical level spacing ¯h1ll′ .

As a result, the average overhz concerns the matrix elementsv2
lr ′ for the non-diagonal

resonances, equation (5.7), whereas in the direct transitions, equation (5.14), it merely affects
the level spacing1lr . The intrawell relaxation is hardly modified by the hyperfine field.

6.1. Non-diagonal resonances

The average overhz in v2
lr ′ concerns the asymmetry energiesε andε′ in the amplitudesu

andu′ of equation (5.6). The ensuing integral∫
dh P (h)v2

could be calculated numerically; yet a slight simplification of the field dependence will
permit us to obtain an analytic result.
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We start with a few remarks concerning (5.6). (i) Except for very large magnetic fields,
we havecL ≈ −cR−1. (ii) For states not too close to the top of the barrier, we have
�LR � bz, resulting inu � u′ � 1 for ε > 0 and (1− u2)1/2 � (1− u′2)1/2 � 1 for
ε < 0. As a consequence, we may replaceu by 2(−ε) and (1− u2)1/2 by 2(ε). With (i)
and (ii), the averagev2 reads as

v2
lr ′ =

1

4
(cL − cR−1)

2
{
u′22(ε′)+ (1− u′2)2(−ε′)

}
(6.2)

with

f (h) =
∫

dh P (h)f (h).

From (4.8) it is clear that the expression in brackets is sharply peaked about

ε = EL′ − ER′ + (L′ − R′)h ≈ 0.

Since the weightP(h) is a much smoother function, it may be evaluated at

h = −(EL′ − ER′)/(L′ − R′).
The remaining integral is equal to�′, resulting in

v2
lr ′ =

1

4
(cL − cR−1)

2P

(
EL′ − ER′
L′ − R′

)
�′. (6.3)

Note the correspondencel ↔ L, l′ ↔ L′, etc. Primed quantities such as�′ refer to resonant
angular momentum statesL′ andR′; cf. figure 1. The asymmetryε is the same for all such
pairs.

The averaged matrix elementv2 shows two remarkable features, as a function ofε and
�′. For small asymmetry, i.e., close to resonance, the quantityP�′ takes its maximum
value. As soon as|EL′ − ER′ | exceeds the hyperfine field,v2 falls off quickly.

The energy distance for transitions through non-diagonal resonances,1lr ′ , is of the order
of SA, which is much larger than the hyperfine fieldbz. Hence the average of the rate (5.7)
reads as

0lr ′ = πv2
lr ′α1

3
r ′ln(1r ′l). (6.4)

The main effect of the hyperfine couplinghz consists in a broadening of the resonance as a
function of the biasε ∝ B−BJ . Forhz = 0, the factorv2

lr ′ would give rise to a sharp peak
of width �′ at ε = 0, i.e. at the resonance values of the magnetic fieldB. The presence of
hz leads to a distribution of such resonances with widthbz. As a consequence, the rate0lr ′
shows a broad bump as a function ofB about the valuesBJ defined in (1.2); the maximum
value is reduced by a factorP(0)�′ = (�′/πbz).

6.2. Direct transitions

Finally we consider how relaxation through the direct process between the ground-state
doublet is affected by the hyperfine field. The rate (5.14) depends onhz through the energy
h̄1 = √�2+ ε2 in the factor1[1+ n(1)]. At finite temperature the rate

0dir = π(Sbx/A)2α(�/h̄)2kBT/h̄ (h̄1� kBT ) (6.5)

depends on the off-diagonal element� andT only.
In the limit of zero temperature, the nuclear spins are frozen in the ground state with

respect to the hyperfine coupling, andhz is no longer a random variable but takes a fixed
value. The resulting rate reads as

0dir = π(Sbx/A)2α(�/h̄)21 (T = 0) (6.6)
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with h̄1 =
√
�2+ (gµSB)2, where the magnetic fieldB may include a small contribution

from the hyperfine coupling.

7. Discussion

Here we discuss our formal result (3.6) as regards its dependence on temperature and
magnetic field. We focus on the range of parameters that are covered by available exp-
eriments. For a discussion of the parameters, see section 7.4 below.

According to (3.6), magnetic relaxation is governed by a weighted average of the rates
0lr . When starting from an initial state where only states localized in the left-hand well are
populated, we haveQ = 1. For times that are not too long, the rate is given by

0↓ =
∑
lr

pl0lr (7.1)

where the bar denotes the average over the hyperfine fieldhz. More explicitly, these initial
conditions mean thatpr = 0 for all r in the right-hand well, whereas the states in the
left-hand well are occupied according topl=−S ≈ 1 andpl � 1 for l > −S.

As discussed in the preceding section, both direct transitionsl = −r and non-diagonal
resonancesl = −r ± 1 may contribute significantly to the double sum in (7.1). Except for
very low temperatures and small magnetic field, however, the direct ones are irrelevant.

7.1. Magnetic field dependence

Figure 3 shows0↓ as a function ofB, for several temperatures varying from 2 to 3 K.
As discussed above, the rate is strongly enhanced at the values (1.2) of the magnetic field.
According to (6.3) and (6.4), the shape of these resonances is determined by the distribution
of the hyperfine field,Pz(hz), and their width is given bybz.
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Figure 3. The magnetic relaxation rate (7.1) as a function of the external fieldB for several
temperatures. The parameters used are discussed in section 7.4.
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Besides the strong enhancement atB = BJ , the rate shows an overall increase as a
function of the magnetic field, since the number of intermediate states decreases in the
perturbation series for�LR, thus enhancing the off-diagonal matrix element�LR.

The curves plotted in figure 3 account for data observed by several groups [12–15].
The dependence onB andT agrees qualitatively with that reported in [13], although the
variation withT is somewhat stronger than is shown by the data, and the resonance shape is
not quite the same. A possible enhancement of the rate at the even resonancesJ = 0, 2, . . .
due to a transverse crystal field is discussed below.
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Figure 4. The magnetic relaxation rate (7.1) as a function of the external field close toB = 0
for several temperatures. The parameters are discussed in section 7.4.

When considering the field dependence more closely, one finds that the maxima do
not occur atB = BJ , but are shifted to slightly higher values of the magnetic field. This
asymmetry is shown in figure 4 for the resonance aboutB = 0 at several temperatures. The
physical mechanism for this effect is most easily understood in terms of figure 2, with the
initial state l = −S. The most efficient relaxation channel involves the excited resonance
labelled (2). For small but positive magnetic field, the activation energy is reduced by
2SgµB, and the rate increases accordingly; as soon as the field exceeds the longitudinal
hyperfine couplinghz, the overlap matrix elementv2 is strongly suppressed. Thus the
maximum occurs atB ≈ bz.

Barbaraet al [16] have studied the asymmetry of the resonance atB = 0 in detail,
and found a behaviour similar to that of figure 4, though the observed maxima are more
pronounced than those in our figure. (Compare this with the remark in section 7.4.)

In the limit of zero temperature and finite but not too large magnetic field,� <

2gµSB � A, the relaxation is governed by the direct rate0dir. In this range, we expect a
linear variation of the rate with the magnetic field:

0dir ∝ �2B (T = 0) (7.2)

according to (6.6). This linear law arises from the product of two factors in0dir. Evaluating
the cubic bath spectral density (2.21) at the ground-state splitting1 ≈ 2SgµB/h̄ gives rise
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to B3, as derived in [17]; there are, however, the overlap matrix elementsu2(1− u2) in v2

that give, forε = 2SgµB > �, a factor�2/(2SgµB)2, according to (5.12).
Equation (7.2) is valid forkBT < 2SgµB; in the opposite case the magnetic field has

to be replaced by temperature:

0dir ∝ �2T (2SgµB < kBT � A) (7.3)

resulting in a rate that is independent of the magnetic field. Note that0dir is significantly
smaller than the rate derived in [17, 26].

7.2. Temperature dependence

Each contribution to the relaxation rate0↓ consists of two factors that both depend on
temperature.First, the occupation numberpl ∝ exp(−El/kBT ) varies exponentially with
the energy distance from the ground state in the left-hand well. The higher the energy of
the excited stateEl , the smaller the corresponding Boltzmann factor.Second, the variation
of the transition rate0lr with l and r arises mainly from the factor� in the averaged
overlap matrix elementsv2

lr ∝ P�. The Bose factor that accounts for the different weights
of phonon emission and absorption gives rise to a temperature dependence.
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Figure 5. The magnetic relaxation rate (7.2) as a function of inverse temperature. The parameters
are discussed in section 7.4.

ForB > 0, the rate (7.1) may obey various laws as a function of temperature. At lowT ,
the behaviour for a magnetic field above the first resonant value,gµB > A, is very different
from that at smaller field. For this reason, we discuss the two cases separately. Numerical
results obtained from equation (7.1) for several values ofB are plotted in figure 5.

7.2.1. Small magnetic field.We start with the case whereB � A/gµ. In the limit of
very low temperature, the Boltzmann factorspl of all excited levels vanish, and the rate is
determined by transitions between the ground states in the two wells,l = −S and r = S,
that are almost degenerate, ¯h1−S,S � A; as a consequence, the factor arising from the
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phonon spectral density is very small. The resulting rate0dir is constant atT = 0, and
varies linearly with temperature at finiteT , as discussed above. Relaxation occurs on a very
long timescale that may well not be accessible experimentally. This range isnot visible in
figure 5, since the rate0dir is out of the range shown by orders of magnitude.

As temperature increases, non-diagonal resonances, such as froml = −S to r = S − 1,
or l = −S + 1 to r = S, become more efficient. The resulting rate obeys an Arrhenius law
with activation energyV = E−S+1 − E−S = (2S − 1)A. The curve forB = 0 in figure 5
shows precisely this behaviour in the range below 1.5 K.

On further increasing the temperature, however, transitions between resonant level pairs
not far from the top of the barrier prevail, because of the much larger overlapv2. As a
consequence, the relaxation rate0↓ shows activated behaviour with an energyV that is of
the order of the barrier heightS2A.

Arrhenius behaviour with two different activation energies atB = 0 has been observed
by Barbaraet al [16]. There is a slight discrepancy concerning the crossover temperature;
the change in the activation occurs at 2 K, whereas from figure 5 one finds rather 1.4 K.
(Compare this with the remark in section 7.4.)

7.2.2. Finite magnetic field,gµB > A. At low temperature, the behaviour is very
different from that observed at small field. The relevant transitions occur froml = −S
to r = S, S − 1, S − 2, . . . for B ≈ BJ , with J = 1, 2, 3, . . .. Accordingly, the phonon
spectral densityϕ′′ has to be evaluated at energies1lr that are of the orderSA, and the
resulting rates are larger than in the case whereB ≈ 0 by many orders of magnitude.

For temperatures well below the first excited level,kBT � SA, the rate is constant;
this behaviour is shown in figure 5 below 1.5 K. With (5.7),l = −S, r = S − J , and
B ≈ JA/gµ, the relevant contribution to0↓ reads as

0−S,S−J+1 = πv2
−S,S−J+1α1

3
r ′l . (7.4)

Hence the dominant transitions donot occur between degenerate levels−S andS − J , but
from −S to that below S − J . Going from J to J + 1 enhances the rate by about two
orders of magnitude, since the overlap matrix elementv−S,S−J+1 strongly increases with
decreasing|l − r| = 2S − J .

Above 1.5 K, relaxation from excited levelsl > −S becomes relevant. Since transitions
close to the top of the barrier are most efficient, the rate shows Arrhenius behaviour:

0↓ = 00 exp(−V/kBT ) (7.5)

where the activation energy is given by the energy of the lowest level in the left-hand well,
V = E−S .

The absolute value ofE−S = −S2A+ SgµB decreases with risingB; therefore a finite
magnetic field lowers the effective activation energy. This effect is clearly seen in figure 5,
where the temperature dependence of the rate above 2 K is well described by

V = S2A− SgµB. (7.6)

Activated behaviour of the rate has been reported by several authors [9, 10, 12–16] for
Mn12Ac in the temperature range from 2 to 10 K. The activation energy ofV = 61 K at
B = 0 agrees with (7.5). There is some evidence that increasing the magnetic field reduces
V [10], in accordance with (7.6).

As discussed by Villainet al [19], the prefactor of (7.5) is given by the rates0lr close
to the top of the barrier. There is no rigorous way of mapping the exact expression (7.1)
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onto the simpler law (7.5). Yet it is clear that00 is approximately given by the transitions
from l = 0 to r = 1 [19]. Insertingv2

01 ≈ S2(�2
01/1

2
01), the corresponding overlap energy

�01 = bx
√
S(S + 1)

and level splitting ¯h101 ≈ A, we find

00 ≈ παS2�2
01Ah̄

−3 = παS3b2
xA/h̄

3. (7.7)

At first sight, the Arrhenius law shown in figure 5 is somewhat surprising since each
contribution to (7.1) involves a level spacing1lr that is at most of the orderSA. As
pointed out above, the matrix elementsv2 strongly favour transitions close to the top of the
barrier; the temperature dependence of the corresponding population factorpl gives rise to
the activation energyV .

7.3. Quartic corrections to the crystal field

Regarding the crystal field in the energy (1.1), we have retained the quadratic term along
the easy axisSz only. Here we briefly discuss the relevance of higher-order components,
both parallel and perpendicular to thez-axis. For symmetry reasons, these terms are of at
least fourth order in the spin operatorsSi .

The energy levels of a Mn12Ac molecule are well described by the crystal-field and
Zeeman terms (1.1), which are diagonal in the spin componentSz. Yet there is some
experimental evidence that the quartic correction

− A4S
4
z (7.8)

is not really negligible as compared to the quadratic term−AS2
z . From EPR data [9],

Hartmann-Boutronet al derivedA4/A ≈ 0.006 [26]. With such a finite quartic term, the
resonances of angular momentum states|−M〉 and |M − J 〉 do no longer occur atBJ as
given in (1.2), but at several valuesBJ (M) spread aboutBJ .

In figure 6 we plot the rate arising from (1.4) supplemented with a quartic contribution
−A4S

4, whereA4/A = 0.002. There are two sets of resonances; atT = 1.4 K the rate is
maximum at values forB of about 1.4A/gµ and 2.7A/gµ. With increasing temperature,
the maxima are shifted towardsB = BJ . Such a behaviour has been reported by Barbara
et al [16]. Though smaller by a factor of 3, our value forA4/A is of the same order as that
derived from EPR data [9, 26].

The transverse terms, i.e., those involvingS4
x andS4

y , give rise to an off-diagonal part
of the Hamiltonian that reads, in terms of angular momentum states,

− C(S4
+ + S4

−). (7.9)

Unlike the hyperfine interaction (1.3), the transverse crystal field (7.9) mixes only angular
momentum states with1M = ±4. Hartmann-Boutronet al [26] have studied in detail the
energy eigenstates and the relaxation dynamics arising from a phonon coupling potential
(1.5) with various choices for the operatorv(S).

When using (7.9) instead of the transverse hyperfine couplingSxhx , we would find a
very different behaviour for odd resonancesJ = 1, 3, 5, . . . and even onesJ = 2, 4, . . .
in (1.2). In fact, the relaxation rate would be large at the even ones, whereas the odd
resonances would be blocked.

Since such an effect is hardly visible in the data reported in references [13, 14], we
conclude that the transverse part of the Hamiltonian is dominated by the hyperfine coupling.
On the other hand, the data of reference [15] show, at 2.1 K, a rate that is larger atJ = 0
than atJ = 1; yet this discrepancy arises at 2.1 K only—for higher temperatures the value
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Figure 6. The relaxation rate as a function ofB; as in figure 3, but with the finite quartic term
(7.8). For the phonon coupling, we have usedα = 1.25× 10−33 s2.

at the resonances increases withJ . Again, this would indicate that there is a small but finite
transverse crystal field. In a very recent paper, Luiset al have investigated the interplay of
such a quartic transverse crystal field and hyperfine or dipolar interactions [22].

7.4. Parameters

Finally we discuss the parameters used for our plots. The parameter of the crystal field
A takes a value of about 0.6 K [9]; our values for the hyperfine fieldsbx = 0.45A and
bz = 0.15A are close to that obtained by Hartmann-Boutronet al [26], b = 0.15A. The
better agreement with experimental data is the reason for our choosingbx three times larger
thanbz.

We suspect that the simple form of the longitudinal hyperfine coupling is responsible for
this discrepancy. The actual interaction with nuclear spins may well be more complicated
than (1.3); cf. appendix E of [26].

The phonon coupling constant (2.22) provides an overall factor for the rate; its dimension
is (time)2. With the exception of in figure 6, we have putα = 1.25×10−37 s2, corresponding
to an elastic deformation potentialγ /kB of about 0.1 K. When taking account of the factor
S3/2 carried by the matrix element (1.7), we find a value between 1 and 10 K, which
is identical to the deformation potential given by Abragam and Bleaney for spin–lattice
coupling of rare-earth ions (cf. section 10.4. of reference [32]).

We should note that the agreement with a given data set could be significantly improved
by varying the parameters. It is worthwhile to mention that the crossover temperature of
figure 5 could be adjusted to the observed value of 2 K with a larger value ofbx . On the
other hand, this would lead to much too large a prefactor00. Again, both features could be
improved by introducing additional parameters, e.g., a finite transverse crystal field (7.9).
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8. Miscellaneous comments

8.1. Perturbation theory

Our perturbation theory of the reduced propagator constitutes a controlled approximation
in terms of the spin–phonon coupling. It is essential that the perturbation expansion is
performed in theenergy eigenbasisof the spin system, rather than in the angular momentum
states. As a second approximation, we have expanded the coefficients of the energy eigen-
states in terms of the small energies�NM and retained the leading contributions only.

To second order in the phonon coupling, the dynamics of the off-diagonal basis operators
Xnm, with n 6= m, is such that they decouple from the diagonal ones,Xnn. As a consequence,
the Liouville matrix factorizes into two corresponding blocksV andW. We emphasize that
this decoupling occurs only in a Liouville basisXnm composed of energy eigenstates|n〉 of
the spin part of the Hamiltonian.

The choice of the energy eigenbasis permits us to avoid a problem that is encountered
when using the angular momentum eigenbasis. To see this, we note that the overlap matrix
elementsu,

√
1− u2, etc, in (5.6) give rise to factor similar to (5.12). Thus the rates read

as

0lr ′ ∝ �2
L′R′

�2
L′R′ + ε2

L′R′
0l′l′ (8.1)

where� is the off-diagonal matrix element.ε = gµB(L′ − R′) is the asymmetry induced
by the magnetic field, and0l′l′ is the level width of the quantum statel′. Thus in the limit
whereB = 0 and in the absence of a longitudinal hyperfine field, the rate for transitions
from the left-hand well to the right-hand one is roughly identical to the level width; for
largeB the rate is proportional to�2

L′R′/ε
2
L′R′ .

Very recently, a related problem has been tackled perturbatively in terms of the angular
momentum basis [23]; the resulting rate for transition between excited states reads in our
notation

0 ∝ �2
L′R′

02
l′l′ + ε2

L′R′
0l′l′ . (8.2)

Hence for zero fieldB = 0, i.e. ε = 0, and small level width,0l′l′ � �L′R′ , the relaxation
rate is inversely proportional to the width,0 ∝ 1/0l′l′ , which is clearly unphysical. (For
vanishing phonon coupling, one finds0l′l′ → 0 and hence a diverging relaxation rate
0→∞.) This problem arises since�2 is missing in the denominator of (8.2).

Garanin and Chudnovsky studied the present problem using perturbation theory for the
angular momentum states [21]. By mapping the relaxation between molecular states on a
corresponding conductance problem, these authors perform implicitly a partial summation
of the perturbation series and hence avoid the above shortcoming of the angular momentum
basis.

Since it is based on energy eigenstates, the present approach does not encounter such
a diverging energy denominator; in second order it already gives the correct result in the
limit of zero field.

8.2. The nature of resonant transitions: the hybrid process

As a most striking feature, the relaxation rate shows resonances at those values for the
magnetic field where the levels in the left-hand and right-hand wells cross. The origin of
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these resonances may be traced back to the overlap matrix elementsvlr ′ that are maximum
where the offset due to the magnetic field and the hyperfine coupling vanishes.

Such a behaviour has been discussed before by several authors; e.g. in references [26,
13]. Note, however, an essential difference with respect to the nature of the microscopic
process. It has been generally assumed that the system is scattered from the left-hand state
l of such a resonant level pair to the right-hand one,r.

In view of our perturbation theory, it turns out that the most relevant process occurs
between states that belong todifferent pairs; cf. the transition (2) in figure 2. We find
that the phonon-assisted rate of transfer between resonant levels—in our notation0dir—is
insignificant, except for very low temperatures and smallB. For T not too small, the non-
diagonal resonant transitions are more efficient, because of the strong frequency dependence
of the bath spectral densityϕ′′(ω).

Relaxation from the left-hand to the right-hand well involves a change of bothenergy
and magnetization, thus requiring ahybrid process. Energy conservation is ensured by
absorption or emission of a phonon, whereas the magnetization is carried away by the
transverse hyperfine fieldhx that is hidden in the off-diagonal entries�NM . Accordingly,
the rate is proportional to the square of the elastic deformation potentialγ and to the square
of the relevant�LR. The former appears in the parameterα in (2.22), whereas the latter is
hidden in the factorv2 of the rate; equation (6.5) displays both factors most clearly.

8.3. Transition without phonons

The phonon-driven rate becomes very small in the limit of zero temperature and zero field,
since it involves the phonon density of states at very low frequency. In this range the
nuclear spins may act as a heat bath more efficiently than acoustic waves [24]. There is
experimental evidence for this occurring forT → 0, resulting in a constant rate that does
not depend on phonon coupling [10].

8.4. Coherent motion between the two wells

The time propagatorU derived in section 2 factorizes in two parts,V andW (cf. equations
(2.12)–(2.17)). The former describes the relaxational, or zero-frequency, dynamics of the
spin system; the resulting long-time behaviour of the magnetization is the main issue of this
paper.

Here we briefly address the second part,W(t), that accounts for the oscillatory, or
coherent, time evolution of the electron spins; it gives rise to damped oscillations in the
experimentally relevant two-time correlation functionC(t − t ′) = 〈Sz(t)Sz(t ′)〉ρ . In a
scattering experiment, the resolventW(z) would describe inelastic transitions with resonance
frequencies1nm and widthsτ−1

nm .
The most interesting case concerns very low temperature and zero magnetic field. These

conditions ensure that there is only a single resonance frequency, i.e., the ground-state
splitting h̄1 = √�2+ ε2. When calculating the oscillatory contribution to the correlation
function, one finds, moreover, that it is reduced by a residue factor:

Cres(t) = (�2/h̄212) cos(1t) exp(−t/τ ). (8.3)

As a consequence, the oscillations disappear as soon as the biasε exceeds the tunnel energy
�. The latter, however, is smaller by many orders of magnitude than the random hyperfine
field hz, thus rendering hopeless the search for those oscillations. But even if one could
detect a signal as weak as�2/h̄212, the average overhz would result in a broad distribution
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of frequencies, since ¯h1 =
√
�2+ S2h2

z for B = 0. As a further complication, one finds

that phonon damping is strong, resulting in a phase coherence timeτ that reaches the
millisecond range only atvery low T ; it is much shorter than the barrier crossing time
1/0↓.

From this discussion we conclude that both nuclear spins and phonons would destroy
the coherent motion ofSz, due to the small energy overlap� of the ground states in the
two wells. In this sense, the twelve spins of Mn12Ac are already too large a system to show
quantum coherence.

9. Summary

In this paper we have investigated the relaxation behaviour of mesoscopic molecules such
as Mn12Ac. We have explicitly evaluated the reduced spin propagator, by expanding the
self-energy matrix in terms of the spin–phonon coupling. The dynamics occurs on two very
different timescales that are given by the rate for transitions within one well, and the rate
for transitions from one well to the other. Since the latter one is much smaller, magnetic
relaxation may be reduced to an effective two-state problem. Here we summarize our main
results.

(i) The most relevant phonon-mediated transitions do not occur between almost
degenerate levels, but from one resonant pair to another; compare (2) in figure 2.

(ii) The relaxation rate is strongly enhanced at the ‘resonant’ values of the magnetic field
(1.2), withJ = 0, 1, 2, . . .. The width of these resonances is determined by the longitudinal
hyperfine fieldbz.

(iii) The resonances are not symmetric aboutBJ , but slightly shifted to positiveB−BJ .
This effect arises from the fact that a small excess field lowers the activation energy for
non-diagonal resonances. Compare this with figure 4.

(iv) At temperatures above 2 K, transitions close to the top of the barrier are the most
efficient; as a consequence, the rate shows activated behaviour whereV = S2A− gµSB is
given by the energy distance from the ground state in the left-hand well to the top of the
barrier.

(v) Below about 1 K and for sufficiently large magnetic field,gµB > A, the rate is
constant as a function of temperature. For small field,gµB � A, it shows Arrhenius
behaviour with the activation energyV = (2S − 1)A.

(vi) At very low temperature, the rate is determined by the direct phonon process in the
ground-state doublet. For small field,gµB � A, andT = 0, relaxation isvery slow, with
a rate that is linear inB. At small field and small but finite temperature, the rate varies
linearly with T and is independent ofB; cf. equations (6.5) and (6.6). As a consequence,
the rate for direct transitions is significantly smaller than those discussed in previous work;
this rate is reduced by a factor�2/[�2 + (2SgµB)2], which may be much smaller than
unity. See the discussion below equations (5.14) and (7.2).
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